Калькулятор расчета вольтамперной характеристики стабилизатора напряжения

Калькулятор расчета вольтамперной характеристики стабилизатора напряжения — с разъяснениями

Основные параметры стабилитрона

Когда диод включён в прямом направлении (анод – « », катод – «–»), то он свободно начинает пропускать ток при напряжении Uпор, а при включении в обратном направлении (анод – «–», катод – « ») через диод может проходить лишь ток Iобр, который имеет значение нескольких мкА. Если увеличивать обратное напряжение Uобр на диоде до определённого значения Uобр.

Стабилитрон же разработан таким образом, что его вольт-амперная характеристика в области пробоя обладает высокой линейностью, а напряжение пробоя достаточно постоянно. Таким образом можно сказать, что стабилизация напряжения стабилитроном осуществляется при его работе на обратной ветви вольт-амперной характеристики, в области же прямой ветви стабилитрон ведёт себя аналогично обыкновенному диоду. Стабилитрон обозначается следующим образом

Рассмотрим основные параметры стабилитрона по его вольт-амперной характеристике.

Вольт-амперная характеристика стабилитрона

Напряжение стабилизации Uст определяется напряжением на стабилитроне при протекании тока стабилизации Iст. В настоящее время выпускаютя стабилитроны с напряжением стабилизации от 0,7 до 200 В.

Максимально допустимый постоянный ток стабилизации Iст.max ограничен значением максимально допустимой рассеиваемой мощности Pmax, зависящей в свою очередь от температуры окружающей среды.

Минимальный ток стабилизации Iст.min определяется минимальным значением тока через стабилитрон, при котором ещё полностью сохраняется работоспособность прибора. Между значениями Iст.max и Iст.min вольт-амперная характеристика стабилитрона наиболее линейна и напряжение стабилизации изменяется незначительно.

Дифференциальное сопротивление стабилитрона rСТ – величина, определяемая отношением приращения напряжения стабилизации на приборе ΔUCT к вызвавшему его малому приращению тока стабилизации ΔiCT.

Стабилитрон, включённый в прямом направлении, как обычный диод, характеризуется значениями постоянного прямого напряжения Uпр и максимально допустимого постоянного прямого тока Iпр.max.

Основная схема включения стабилитрона, которая является схемой параметрического стабилизатора, а также источником опорного напряжения в стабилизаторах других типов приведена ниже.

Схема включения стабилитрона

Данная схема представляет собой делитель напряжения, состоящий из балластного резистора R1 и стабилитрона VD, параллельно которому включено сопротивление нагрузки RН. Такой стабилизатор напряжения обеспечивает стабилизацию выходного напряжения при изменении напряжения питания UП и тока нагрузки IН.

Рассмотрим принцип работы данной схемы. Увеличении напряжения на входе стабилизатора приводит к увеличению тока который проходит через резистор R1 и стабилитрон VD. За счёт своей вольт-амперной характеристики напряжение на стабилитроне VD практически не изменится, а соответственно напряжение на сопротивлении нагрузки Rн тоже.

входное напряжение U0;

выходное напряжение U1 = Ust – напряжение стабилизации;

Для примера возьмём следующие данные: U0 = 12 В, U1 = 5 В, IH = 10 мА = 0,01 А.

1. По напряжению стабилизации выбираем стабилитрон типа BZX85C5V1RL (Ust = 5,1 В, дифференциальное сопротивление rst = 10 Ом).

4. Определяем коэффициент полезного действия

Максимальная выходная мощность простейшего параметрического стабилизатора напряжения зависит от значений Iст.max и Pmax стабилитрона. Мощность параметрического стабилизатора может быть увеличена, если в качестве регулирующего компонента использовать транзистор, который будет выступать в качестве усилителя постоянного тока.

Схема ПСН с параллельным включением транзистора

Схема представляет собой эмиттерный повторитель, параллельно транзистору VT включено сопротивление нагрузки RH. Балластный резистор R1 может быть включён как в коллекторную, так ив эмиттерную цепи транзистора. Напряжение на нагрузке равно

Схема работает следующим образом. При увеличении тока через резистор RH, а соответственно и напряжения (U1 = UCT) на выходе стабилизатора, происходит увеличение напряжения база-эмиттер (UEB) и коллекторного тока IK, так как транзистор работает в области усиления. Возрастание коллекторного тока приводит к увеличению падения напряжения на балластном резисторе R1, что компенсирует рост напряжения на выходе стабилизатора (U1 = UCT).

Поскольку ток IСТ стабилитрона является одновременно базовым током транзистора, очевидно, что ток нагрузки в этой схеме может быть в h21e раз больше, чем в простейшей схеме параметрического стабилизатора. Резистор R2 увеличивает ток через стабилитрон, обеспечивая его устойчивую работу при максимальном значении коэффициента h21e, минимальном напряжении питания U0 и максимальном токе нагрузки IН.

Коэффициент стабилизации будет равен

где RVT – входное сопротивление эмиттерного повторителя

где Re и Rb – сопротивления эмиттера и базы транзистора.

Сопротивление Re существенно зависит от эмиттерного тока. С уменьшением тока эмиттера сопротивление Re быстро возрастает и это приводит к увеличению RVT, что ухудшает стабилизирующие свойства. Уменьшить значение Re можно за счёт применения мощных транзисторов или составных транзисторов.

Параметрический стабилизатор напряжения, схема которого представлена ниже, представляет собой эмиттерный повторитель на транзисторе VT с последовательно включённым сопротивлением нагрузки RH. Источником опорного напряжения в данной схеме является стабилитрон VD.

Схема ПСН с последовательным включением транзистора

Схема работает следующим образом. При увеличении тока через резистор RH, а соответственно и напряжения (U1 = UST) на выходе стабилизатора происходит уменьшение отпирающего напряжения UEB транзистора и его базовый ток уменьшается. Это приводит к росту напряжения на переходе коллектор – эмиттер, в результате чего выходное напряжение практически не изменяется.

Коэффициент стабилизации схемы

где Rk – сопротивление коллектора биполярного транзистора.

Обычно kST ≈ 15…20.

Коэффициент стабилизации параметрического стабилизатора напряжения может быть существенно увеличен при введении в его схему отдельного вспомогательного источника с U’0 gt; U1 и применении составного транзистора.

Схема ПСН с составным транзистором и питанием стабилитрона от отдельного источника напряжения

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Расчет мощности стабилизатора напряжения

Используйте онлайн калькулятор мощности стабилизатора напряжения для расчета потребления тока каждого бытового прибора. Для аппаратуры, Вы можете посмотреть потребление энергии в паспорте, а так же эта информация дублируется и на самом приборе (на задней стенке прибора). Так же необходимо учитывать различные типы нагрузки. Нагрузка существует как активная, так и реактивная.

Онлайн калькулятор мощности позволяет правильно учесть активную нагрузку. Активная нагрузка, потому и называется активной, что вся потребляемая электроэнергия преобразуется в другие виды энергии (тепловую, световую и др.). Многие приборы и устройства имеют только активную нагрузку. К таким приборам и устройствам можно отнести лампы накаливания, обогреватели, электроплиты, утюги и т.д.

Если их указанная потребляемая мощность составляет 1 кВт, для их питания достаточно стабилизатора мощностью 1кВт. Реактивные нагрузки. К таким устройствам можно отнести приборы и изделия имеющие электродвигатель. Среди бытовой техники, таких устройств очень много — почти вся электронная и бытовая техника. Они имеют полную мощность и активную.

Полная мощность исчисляется ВА (вольт-амперы), активная мощность исчисляется Вт (ваттах). Полная мощность (вольт-амперы) и активная мощность ( ватты) связаны между собой коэффициентом cos ф. На электроприборах имеющих реактивную составляющую нагрузки , часто указывают их активную потребляемую мощность в ваттах и cos ф. Для того чтобы Вам подсчитать полную мощность в ВА, нужно активную мощность в Вт разделить на cos ф.

Сделаем расчет мощности стабилизатора напряжения на примере.

Пример: если на дрели написано «700 Вт» и » cos ф = 0,7″, это означает, что на самом деле потребляемая инструментом полная мощность будет равна 700/0,7=1000 ВА. Если cos ф не указан, то в среднем активную мощность можно разделить на 0,7.

Высокие пусковые токи. Многие приборы в момент пуска могут потреблять энергии в несколько раз больше, чем их номинальная мощность. К таким приборам относятся все устройства, содержащие двигатель.

Например, глубинный насос, холодильник и т.д.. Указанную в паспорте потребляемую мощность необходимо умножить на 3-5 раз, иначе Вы не сможете включить эти устройства через стабилизатор, потому что будет срабатывать защита от превышения мощности.

После того как Вы получили суммарную мощность всех приборов, необходимо посчитать какие именно приборы будут включатся одновременно и у каких приборов есть пусковые токи. Только в этом случае Вы правильно рассчитаете правильную мощность стабилизатора напряжения необходимого для питания Вашей бытовой техники.

Рекомендуется выбирать модель стабилизатора с 20% запасом по мощности. Во-первых, Вы обеспечите «щадящий» режим работы стабилизатора, тем самым, увеличив его срок службы, во-вторых, создадите себе резерв мощности для дополнительного подключения нового оборудования.

Линейные стабилизаторы напряжения на транзисторах и интегральных
микросхемах.

Онлайн расчёт элементов схем линейных стабилизаторов с фиксированным и
регулируемым выходным напряжением.

Для поддержания стабильной работы и сохранения заявленных параметров электрооборудования его питание в большинстве случаев должно осуществляться постоянным и неподконтрольным никаким внешним воздействиям напряжением. Как правило, эта функция возлагается на устройства, называемые стабилизатором напряжения.
Стабилизатор напряжения – это преобразователь электрической энергии, предназначенный для поддержания уровня выходного напряжения в заданных пределах при изменениях следующих величин: входного напряжения, сопротивления нагрузки, а также в идеале – температуры и иных внешних воздействий.

Ещё не так давно подобные узлы строились на стабилитронах и транзисторах, однако с появлением специализированных микросхем, необходимость в самостоятельном конструировании подобных схем скоротечно отпочковалась, ввиду очевидной простоты реализации стабилизаторов, выполненных на интегральных микросхемах. А зря!

Там, где значения коэффициента стабилизации Кст допустимо исчислять десятками, а не сотнями-тысячами, простейший параметрический стабилизатор не только имеет право на существование, но и выигрывает у своих интегральных собратьев по такому важному параметру, как чистота выходного напряжения и отсутствие импульсных помех в момент резкого изменения тока нагрузки.
Давайте рассмотрим такие простейшие устройства стабилизаторов напряжения.

Рис.1 а) Простейшая схема б) С эмиттерным повторителем в) С регулируемым вых. напряжением

Схема стабилизатора напряжения, приведённая на Рис.1 а), используется в основном с устройствами, через которые не протекает существенных токов. От номинала резистора Rст зависит величина тока Iвх, протекающего как через стабилитрон, так и через нагрузку. Величина этого тока рассчитывается по формуле: Rст = (Uвх – Uст)/ Iвх ,
а Iвх должен удовлетворять условию Iвх ≥ Iн. макс + Iст. мин , где Iн. макс – максимальный ток в нагрузке при заданном выходном напряжении, а Iст. мин – минимальный ток стабилизации стабилитрона, указанный в характеристиках полупроводника. В стабилитронах отечественных производителей параметр Iст. мин , как правило, задан в явном виде, у зарубежных может быть не указан вообще. Куда податься бедному еврею? Я бы рекомендовал в этом случае ориентироваться на значение тока из datasheet-ов “Izk” (значение при котором стабилитрон обладает максимальным импедансом) и увеличить эту величину в 2. 3 раза. Хотя, по большому счёту, оптимальным (с точки зрения достижения максимальных параметров) током для стабилитрона является тестовый ток, при котором измеряются основные характеристики полупроводника.

Для наиболее эффективного выполнения своих задач стабилитрону довольно важно, чтобы мощность нагрузки не превышала мощности, рассеиваемой на полупроводнике. Поэтому если возникает потребность стабилизации напряжения в нагрузках, потребляющих значительную мощность, используется дополнительный усилитель тока – эмиттерный повторитель (Рис.1 б)). В этом случае нагрузкой для стабилитрона является входное сопротивление повторителя Rвх ≈ Rн x (1 + β) , т.е. ток нагрузки можно увеличить в β раз. Тут важно учитывать падение напряжения на эмиттерном переходе транзистора, в связи с чем напряжение на выходе стабилизатора будет на 0,6. 0,7 В (на 1,2. 1,4 В для составного транзистора) меньше напряжения стабилизации стабилитрона .

Установив параллельно стабилитрону переменный резистор (Рис.1 в)), возникает возможность изменять напряжение стабилизации в нагрузке от нуля почти до максимального значения напряжения стабилизации стабилитрона (за вычетом падения напряжения Uбэ на переходе транзистора). Естественно, что ток, протекающий через переменник, также необходимо учитывать, задаваясь его значением – не меньшим, чем входной ток эмиттерного повторителя.
Сдобрим пройденный материал калькулятором.

ТАБЛИЦА РАСЧЁТА ЭЛЕМЕНТОВ ЛИНЕЙНОГО СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ

Схемы компенсационных линейных стабилизаторов являются основой большинства интегральных микросхем, выполняющих функцию стабилизации напряжений и токов, и в простейшем виде могут быть выполнены на стабилитроне и паре транзисторов (Рис.2).

Рис.2 Схемы компенсационных линейных стабилизаторов напряжения

Здесь стабилитрон является источником опорного напряжения, а транзистор Т2 – устройством сравнения выходного напряжения, поступающего через резистивный делитель на его базу, с опорным значением напряжения на его эмиттере. Повысилось выходное напряжение, а вместе с ним напряжение на базе Т2, транзистор приоткрывается и притягивает напряжение на базе регулирующего транзистора Т1 к минусовой (земляной) шине, тем самым, уменьшая напряжение на его эмиттере, а соответственно и на выходе схемы. Снизилось выходное напряжение – всё то же самое, только наоборот. Компенсационные стабилизаторы на транзисторах имеют более высокий коэффициент стабилизации по сравнению с устройствами, представленными на Рис.1, но в связи наличием обратной связи имеют и свои недостатки.
В связи с этим подробно останавливаться на них мы не будем, а перейдём сразу к интегральным стабилизаторам, имеющим похожий принцип действия, но значительно более сложным по структуре, обладающих более высокими характеристиками и при этом – очень простых и удобных в реализации.

Существует два типа подобных интегральных микросхем: регулируемые стабилизаторы напряжения и стабилизаторы с фиксированным значением выходного напряжения. Во втором случае схема стабилизатора приобретает неприлично примитивный вид, незаслуживающий какого-то серьёзного обсуждения.
В случае же стабилизаторов с регулируемым выходным напряжением, схема всё ещё остаётся достаточно простой, но требует некоторых умственных манипуляций, связанных с расчётом резистивного делителя для получения требуемого выходного напряжения.

Типовая схема включения большинства регулируемых микросхем приведена на Рис.3.


Рис.3

Формула для расчёта выходного напряжения имеет вид Vout = Vref x (1+R2/R1) + Iadj x R2 ,
причём номинал сопротивления R1, как правило, задаётся производителем микросхемы для достижения наилучших параметров выходных характеристик.

Отдельные бойцы для снижения пульсаций ставят дополнительные электролиты значительных величин параллельно резистору R2. Оно, конечно, бойцы эти герои, но зачем же стулья ломать?
Любое резкое увеличение тока нагрузки, приводящее к снижению выходного напряжения, не сможет моментально отработаться схемой автоматической регулировки из-за задержки в цепи обратной связи, обусловленной данным конденсатором, а это в значительной степени снизит быстродействие устройства.
И если для статических нагрузок параметр быстродействия стабилизатора по барабану, то для динамических (к примеру, таких как УНЧ) – очень даже немаловажен. Поэтому – либо эти электролиты вообще не нужны, либо (если их настоятельно рекомендует Datasheet) ставить конденсаторы небольших номиналов в строгом соответствии с рекомендациями производителя.

Для начала – справочная таблица с основными техническими характеристиками наиболее часто используемых интегральных стабилизаторов с регулировкой выходного напряжения.

Приведённая ниже таблица позволяет рассчитать номиналы резисторов делителя некоторых популярных типов микросхем регулируемых стабилизаторов, представленных разными производителями.

ТАБЛИЦА РАСЧЁТА ЭЛЕМЕНТОВ МИКРОСХЕМ – СТАБИЛИЗАТОРОВ НАПРЯЖЕНИЯ

Если не хотите, чтобы вдруг “раздался мощный пук” – послеживайте за полярностью включения конденсатора С2. Она должна совпадать с полярностью входного (выходного) напряжения.

Отдельно хочу остановиться на МИКРОМОЩНЫХ СТАБИЛИЗАТОРАХ С МАЛЫМ СОБСТВЕННЫМ ПОТРЕБЛЕНИЕМ.

Такого рода стабилизаторы окажутся совсем не лишними в хозяйстве, так как смогут обеспечить такой важнейший показатель радиоэлектронной аппаратуры с автономным питанием, как экономичность входящих в её состав узлов.

Здесь выбор интегральных микросхем заметно беднее, а цены, как правило, заметно ощутимей, чем на аналоги со стандартным потреблением, поэтому начну я с простой, но проверенной временем схемы на дискретных элементах.


Рис.2

Чем хорош КТ315 в данном включении?
На обратно смещённом переходе КТ315 при напряжении 6 – 7,5В, в зависимости от экземпляра транзистора, возникает электрический (не побоюсь этого слова) пробой, что позволяет использовать его в качестве стабилитрона на эту-же самую величину напряжения пробоя. При этом транзистор в таком включении, в отличие от многих промышленных стабилитронов, хорошо работает и при малых токах стабилизации, порядка 100 мкА.

Из относительно гуманных по цене интегральных стабилизаторов с малым собственным потреблением, могу порекомендовать LP2950, LP2951, LM2931, LM2936 и им подобные.

Калькулятор расчета вольтамперной характеристики стабилизатора напряжения

Время чтения: 2 минуты Нет времени?

Отправим материал вам на e-mail

Нестабильность напряжения в наших электросетях давно уже никого не удивляет и не возмущает. Во многих населенных пунктах с малым количеством жителей сильные отклонения от положенных 220 В стали просто нормой. И если пониженное напряжение в большинстве случаев особых проблем не доставляет и приводит только к временной неработоспособности электрооборудования, то повышающий «скачок» в сети вполне может стать причиной необходимости полной замены бытовой техники и электроинструмента. Хотя до столь трагического и дорогостоящего исхода дело доходит достаточно редко, но нестабильность и сбои в работе электроприборов, мерцание источников искусственного освещения, приводящее к порче зрения – явление в нашей повседневности вполне обыденное. Очень неприятное, но, к счастью, легко устранимое: достаточно использовать стабилизатор – прибор, «сглаживающий» перепады напряжения в сети электроснабжения.

Единственное условие его эффективной работы – соответствие нагрузочной способности стабилизатора мощностям питаемых от него электроприборов. Подобрать требуемую мощность стабилизатора не слишком просто, но крайне важно, поскольку стоимость прибора с повышением его «силовых» способностей растет едва ли не в геометрической прогрессии. С финансовой стороны вопроса обладающий как избыточной, так и недостаточной нагрузочной способностью стабилизатор – пустая трата денег.

Проще всего правильно выбрать необходимую мощность стабилизирующего устройства с помощью специального онлайн-калькулятора, предназначенного специально для расчета вольт-амперной характеристики. Он прост в использовании и позволяет с достаточной точностью учесть суммарную мощность одновременно работающих электроприборов и избежать возможных поломок.

Калькулятор расчета необходимой мощности стабилизатора напряжения

Особенности расчета

Такой калькулятор позволяет избежать главной ошибки, часто допускаемой при оценке требуемой нагрузочной способности стабилизатора – простого арифметического суммирования номинальных потребляемых мощностей имеющегося в доме электрооборудования.

Результат, получаемый при столь упрощенном подходе, может сильно отличаться от реальности, поскольку совершенно не учитывает двух важных факторов:

  • потребление многими электроприборами, являющимися индуктивной нагрузкой (например, электродвигателями), не только активной, но и реактивной мощности;
  • значения пусковых токов для тех же электродвигателей – а эти значения обычно превышают номинальные в несколько раз!

Что нужно знать при расчетах

Для вычисления требуемых нагрузочных характеристик стабилизатора в соответствующих полях калькулятора нужно указать требуемые данные по осветительным приборам и используемым электроприборам. Нужно реалистично подходить к оценке количества одновременно работающих потребителей электроэнергии, отмечая только те из них, которые будут длительно работать вместе с высокой долей вероятности.

Тоже можно порекомендовать и в отношении выбора используемого инструмента. Работать одновременно двумя и, тем более, тремя столь мощными потребителями электричества не приходится практически никогда. Поэтому обычно для подсчета из всего имеющегося «парка» выбираются один-два наиболее мощных инструмента, этого будет вполне достаточно.

Третий вводимый показатель – среднее «типовое» напряжение в сети. Оно необходимо для определения требуемого коэффициента трансформации стабилизатора, поскольку, в зависимости от величины этого коэффициента, может потребоваться некоторое увеличение итоговой мощности прибора – в полученном результате оно будет вычислено автоматически.

Итоговое значение, полученное после ввода всех запрашиваемых данных и нажатия кнопки «Рассчитать», будет выражено в стандартных единицах измерения мощности – вольт-амперах. Соответственно полученному результату и следует выбирать подходящую модель стабилизатора напряжения.

Статья по теме:

Какой выбрать стабилизатор напряжения 220В для дома. Вам знакома проблема перебоев напряжения, что проявляется в мигании лампочек. В статье мы поговорим о том, как правильно выбрать стабилизатор напряжения 220в для дома, чтобы раз и навсегда забыть об этой проблеме.

Экономьте время: отборные статьи каждую неделю по почте

Калькулятор расчета вольтамперной характеристики стабилизатора напряжения

Перепады напряжения в сети запросто способны «отравить» нормальную жизнь за городом – в некоторых дачных поселках они случаются с пугающим постоянством, а иногда и считаются своеобразной «нормой». Что греха таить – бывают весьма ощутимые скачки и в городских электросетях, вызванные техногенными причинами или даже неумелым вмешательством доморощенных «мастеров», проживающих в той же многоэтажке. Все это ведет к нестабильной работе бытовой техники, мерцанию освещения, сбою компьютеров, некорректной работе электроинструмента и т.п. А отсюда – очень недалеко и до выхода оборудования из строя.

Калькулятор расчета вольтамперной характеристики стабилизатора напряжения

Защититься от негативных последствий перепадов напряжения поможет установка стабилизатора. Выбор подобного прибора – достаточно серьезное дело, требующее учета многих критериев. Один из ключевых – «силовой» потенциал стабилизатора, то есть суммарная мощность нагрузки, которую он сможет «потянуть». Определиться с этим параметром поможет калькулятор расчета вольтамперной характеристики стабилизатора напряжения.

Необходимые пояснения будут даны ниже.

Калькулятор расчета вольтамперной характеристики стабилизатора напряжения

Укажите запрашиваемые значения и нажмите кнопку “Рассчитать необходимую мощность стабилизатора” ОСВЕЩЕНИЕ
Укажите количество и тип ламп, которые могут быть задействованы одновременно Лампы накаливания Энергосберегающие лампы Люминесцентные лампы БЫТОВЫЕ ПРИБОРЫ
Отметьте галочками те приборы, которые могут быть с большой долей вероятности задействованы одновременно Отметьте необходимые позиции
Холодильник Микроволновая печь Электроплитка Электрочайник Кухонный процессор Телевизор Медиа-центр Компьютер Ноутбук Зарядное устройство для гаджетов Тепловой вентилятор Обогреватель инфракрасный или масляный Утюг Стиральная машина Посудомоечная машина Пылесос Насос или насосная станция Насос и электроника энергозависимого котла отопления ЭЛЕКТРОИНСТРУМЕНТ
Отметьте галочками только те инструменты, которые могут быть с большой долей вероятности задействованы одновременно Отметьте необходимые позиции

Электродрель Перфоратор Болгарка 125 мм Болгарка 230 мм Пила цепная Циркулярка ручная Пила сабельная Триммер или кусторез Рубанок электрический Фрезер ручной Лобзик электрический Сварочный инвертор Копрессор гаражный Насос для полива Мини-мойка Фен сроительный Характерное значение напряжения в сети до стабилизации

130 В 140 В 150 В 170 В 190 В 200 В 220 В 230 В 240 В 250 В 270 В

Пояснения по проведению расчетов

В калькуляторе все электрические приборы разделены на три группы – «Освещение», «Бытовая техника» и «Электроинструмент».

  • Следует правильно понимать, что обычное суммирование потребляемых мощностей приборов даст крайне неточный результат. Тому – две причины. Во-первых, многие устройства, особенно оснащенные электродвигателями или какими-либо электромагнитными элементами, потребляют еще и реактивную мощность, и она может быть весьма значительна. Во-вторых, необходимо принимать во внимание значения пускового тока – а они порой в несколько раз превосходят номинальные показатели.

Не будем особо вдаваться в теорию, лишь скажем, что для указанных в калькуляторе приборов учтены оба этих критерия.

  • В соответствующих полях необходимо будет указать перечень электроприборов, которые могут быть одновременно подключены к стабилизатору напряжения. Здесь, безусловно, важна умеренность – если перечислить все, что имеются в доме, то можно получить пугающую по своей величине характеристику. Надо отметить именно то, что с большой долей вероятности будет работать одновременно, без чего действительно никак не обойтись.

В особенности это касается электроинструментов. Все они – весьма энергоёмкие, но вряд ли хозяин будет задействовать больше одного, максимум – двух приборов одновременно.

  • Наконец, калькулятор учитывает еще и коэффициент трансформации. Никуда не деться – выравнивание напряжения до номинала неизбежно сопровождается потерей мощности. Соответствующая поправка будет вноситься на основании указанного напряжения в сети до его стабилизации. А чтобы узнать этот параметр, лучше всего в течение нескольких дней провести измерения напряжения в сети в разное время суток (особый упор делая на утренние и вечерние пиковые часы потребления), чтобы получить ясную картину «поведения» подаваемого электропитания.

Полученное значение выражено в вольт-амперах. Ориентируясь на него, можно будет выбирать оптимальную модель.

Полезная информация о стабилизаторах напряжения

Некоторые хозяева загородных домов «отмахиваются» от приобретения стабилизатора, мол, и так сойдет. Когда-нибудь – может и не «сойти», так как никто не застрахован от аварийных ситуаций на линиях электропередач, а последствия от этого могут быть весьма печальные. В чем заключается особая важность и нужность стабилизатора напряжения для дома , как его правильно выбрать, на что обратить особое внимание – в специальной публикации нашего портала.

Калькулятор расчёта мощности стабилизатора напряжения

МОЩНОСТЬ СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ КАКУЮ ВЫБРАТЬ ДЛЯ ДОМА, ДАЧИ, ГАЗОВОГО КОТЛА?

Устройство, которое имеет электродвигатель – его мощность нужно умножить на 3 (из-за использования большего тока при запуске двигателя).

Например: холодильник на 400Вт x 3 = 1200Вт. Для подбора ему стабилизатора, следует учитывать мощность не 400, а 1200 Вт.

Более детальный пример выбора стабилизирующего устройства описан на странице ниже.

Немаловажно при выборе мощности стабилизатора для дома или дачи учитывать то, что у некоторых приборов пусковой ток в несколько раз превышает номинальный (это происходит из-за потребления большего тока при запуске двигателя). Примером таких устройств могут быть приборы с асинхронными двигателями – холодильники, насосы, компрессоры. Для их нормального функционирования нужен стабилизатор, чья мощность в 2-3 раза превышает потребляемую.
Для того чтобы правильно рассчитать мощность стабилизатора необходимо сложить мощность всех потребителей включаемых одновременно с учетом пусковых токов.

Вы можете самостоятельно произвести расчёт мощности через калькулятор, или обратиться к нашим услугам,
либо позвонить по телефону +7 (495) 137-59-53 и получить бесплатную консультацию по выбору стабилизатора для сети 220 или 380 вольт. Задать свой вопрос можно написав нам через чат сайта или на почту: kupitstabilizator.ru@gmail.com, для ответа укажите свои контакты по которым с вами лучше связаться.

В калькуляторе – мощность Ватт и количество электроприборов можно менять на свои .

ВЫБРАТЬ СТАБИЛИЗАТОР ДЛЯ ГАЗОВОГО КОТЛА МОЖНО В КАЛЬКУЛЯТОРЕ МОЩНОСТИ ЗДЕСЬ

ДИАГНОСТИКА СЕТИ Диагностика вашей электросети и рекомендации по выбору оптимального стабилизатора напряжения. Производится осмотр сети, замер напряжения при минимальном и максимальном энергопотреблении, оценивается характер колебаний напряжения и дается развернутая консультация по выбору оборудования.

УСТАНОВКА СТАБИЛИЗАТОРОВ НАПРЯЖЕНИЯ Монтаж и подключение стабилизатора(ов) в вашей электросети. В состав работ входит предпродажная проверка приобретаемого оборудования, демонтаж старого оборудования и монтаж нового, подключение к электросети, пуско-наладочные работы.

Пример определение точной суммарной мощности однофазного и трехфазного напряжения

Прежде чем приобрести стабилизирующее устройство для сети с одной фазой, следует определить суммарную мощность всех энерго потребителей, которые будут подключены к стабилизатору. Допустим, планируется осуществить его установку прямо на входе, обеспечив энергией весь дом. В таком случае следует выяснить величину активной мощности каждого устройства, после чего все значения сложить.

Стандартный набор устройств:

(Мощность современных устройств может быть больше, в таком случае нужно делать подсчет исходя из ваших показателей)

• Телевизор – 300 В;

Общая активная мощность – 3000 В.

При этом пылесос и холодильник имеют электродвигатели. Для запуска двигателей требуется ток, величина которого превышается номинальное значение в 3-5 раз. Поэтому их мощность (пылесоса 1000 и холодильника 400) нужно умножить на это число 3 = 4200 В).

После этого необходимо найти полную мощность, которая отличается от активной на величину коэффициента мощности (cosф). Данное значение указывается в технических паспортах устройств, однако в среднем оно равняется 0,75, для утюгов и прочего нагревательного оборудования – 1, для энергосберегающих лампочек – 0,9. Для пересчета активную мощность нужно разделить на cosф.

• Телевизор – 300 / 0,75 = 400 ВА;

• Компьютер – 300 / 0,75 = 660 ВА;

• Холодильник – (400×3) / 0,75 = 1600 ВА;

• Пылесос – (1000×3) / 0,75 = 4000 ВА;

• Утюг – 550 / 1 = 550 ВА;

• Освещение – 450 / 0,9 = 500 ВА.

Общая мощность равняется 7450 ВА = 7,5 кВт.

На следующем этапе с помощью мультиметра необходимо определить величину минимального сетевого напряжения в наиболее загруженный период.

К примеру, это число равняется 180 В.

Нормальное функционирование стабилизатора возможно лишь, если при его выборе учитывался нижний предел напряжения.

Бытовые электроприборы потребляют не только активную мощность, но и реактивную. Это возникает в результате индуктивности. Если электроприбор оборудован мощным двигателем, то при его включении резко возрастает напряжение. Учитывайте это. Если выбирать стабилизатор по мощности самого электроприбора, которая указана в документации, то в момент такого пика стабилизатор напряжения может попросту не справиться с нагрузкой. Также учитывается коэффициент трансформации. При идеальных условиях он равен нулю. Если происходит просадка или скачок в сети, то стабилизатор его выравнивает. Эта зависимость отображена в таблице.

В данном случае минимальное напряжение равняется 180 В, что соответствует коэффициенту 1,2. Если же значение равняется 170 В, используется коэффициент 1,3.

Определяем мощность:

7,5 умножить на 1,2 = 9 кВт

Однако всегда необходимо оставлять запас мощности. Поэтому полученное число умножаем на коэффициент запаса, который равняется 1,25:

9 умножить на 1,25 = 11,25 кВт

При таких показателях нужно выбирать стабилизатор с мощностью от 12 кВт.

Пример выбора стабилизатора напряжения для трехфазной сети

В результате из имеющегося ассортимента стабилизаторов выбирается наиболее подходящий вариант с мощностью выше полученного значения.

  • ГЛАВНАЯ
  • УСЛУГИ
  • ГАРАНТИЯ
  • ОПЛАТА и ДОСТАВКА
  • КОНТАКТЫ
  • ВОПРОСЫ-ОТВЕТЫ

Каждый товар магазина сертифицирован, имеет официальную гарантию фирмы производителя.

© 2008-2021 Интернет-магазин стабилизаторов
Стабилизаторы напряжения, инверторы, ИБП, АКБ.
Энергия, Rucelf, Штиль, Voltron, Classic, Ultra.

Калькулятор расчёта мощности стабилизатора напряжения

Как выбрать мощность стабилизатора напряжения для дома, дачи, холодильника или газового котла?

При выборе стабилизатора для дома важно учитывать то, что у некоторых электроприборов пусковой ток в несколько раз превышает номинальный. Примером таких электроустройств могут быть приборы с асинхронными двигателями – холодильники, компрессоры, вентиляторы, насосы. Для их нормальной работы потребуется стабилизатор напряжения, чья мощность в два-три раза превышает потребляемую. Получается для устройства, которое имеет двигатель – его мощность нужно умножить на 3 (из-за использования большего тока при запуске двигателя).

Для того чтобы правильно выбрать мощность стабилизатора для дома, необходимо сложить мощность всех потребителей включаемых одновременно с учетом пусковых токов.

Например: холодильник на 600Вт x 3 = 1800Вт. Для подбора ему стабилизатора следует учитывать мощность не 600, а 1800 Вт. (Более подробное описание примера находится на странице ниже.)

Через калькулятор можно произвести подбор мощности самостоятельно, либо получите бесплатную консультацию по выбору однофазного или трехфазного стабилизатора по тел. +7 (495) 137-78-98. Задавайте свои вопросы через чат интернет-магазина или пишите на почту: stabilizatorvolt.ru@gmail.com, также можете воспользоваться нашими услугами:

1). ДИАГНОСТИКА СЕТИ – Диагностика вашей электросети и рекомендации по выбору оптимального стабилизатора напряжения. Производится осмотр сети, замер напряжения при минимальном и максимальном энергопотреблении, оценивается характер колебаний напряжения и дается развернутая консультация по выбору оборудования.

2). УСТАНОВКА СТАБИЛИЗАТОРОВ НАПРЯЖЕНИЯ – Монтаж и подключение стабилизатора(ов) в вашей сети. В состав работ входит предпродажная проверка приобретаемого оборудования, демонтаж старого оборудования и монтаж нового, подключение к электросети, пуско-наладочные работы.

В калькуляторе – мощность Ватт и количество приборов можно менять на свои .

ПОДОБРАТЬ СТАБИЛИЗАТОР ДЛЯ ГАЗОВОГО КОТЛА МОЖНО В КАЛЬКУЛЯТОРЕ МОЩНОСТИ ТУТ
Стабилизаторы напряжения 220В >>>

Пример определение точной суммарной мощности однофазного и трехфазного напряжения

Прежде чем приобрести стабилизирующее устройство для сети с одной фазой, следует определить суммарную мощность всех энерго потребителей, которые будут подключены к стабилизатору. Допустим, планируется осуществить его установку прямо на входе, обеспечив энергией весь дом. В таком случае следует выяснить величину активной мощности каждого устройства, после чего все значения сложить.

Стандартный набор устройств:

(Мощность современных устройств может быть больше, в таком случае нужно делать подсчет исходя из ваших показателей)

• Телевизор – 300 В;

Общая активная мощность – 3000В.

При этом пылесос и холодильник имеют электродвигатели. Для запуска двигателей требуется ток, величина которого превышается номинальное значение в 3-5 раз. Поэтому их мощность (пылесоса 1000 и холодильника 400) нужно умножить на это число 3 = 4200В).

После этого необходимо найти полную мощность, которая отличается от активной на величину коэффициента мощности (cosф). Данное значение указывается в технических паспортах устройств, однако в среднем оно равняется 0,75, для утюгов и прочего нагревательного оборудования – 1, для энергосберегающих лампочек – 0,9. Для пересчета активную мощность нужно разделить на cosф.

• Телевизор – 300 / 0,75 = 400 ВА;

• Компьютер – 300 / 0,75 = 660 ВА;

• Холодильник – (400×3) / 0,75 = 1600 ВА;

• Пылесос – (1000×3) / 0,75 = 4000 ВА;

• Утюг – 550 / 1 = 550 ВА;

• Освещение – 450 / 0,9 = 500 ВА.

Общая мощность равняется 7450 ВА = 7,5 кВт.

На следующем этапе с помощью мультиметра необходимо определить величину минимального сетевого напряжения в наиболее загруженный период.

К примеру, это число равняется 180В.

Нормальное функционирование стабилизатора возможно лишь, если при его выборе учитывался нижний предел напряжения.

Бытовые электроприборы потребляют не только активную мощность, но и реактивную. Это возникает в результате индуктивности. Если электроприбор оборудован мощным двигателем, то при его включении резко возрастает напряжение. Учитывайте это. Если выбирать стабилизатор по мощности самого электроприбора, которая указана в документации, то в момент такого пика стабилизатор напряжения может попросту не справиться с нагрузкой. Также учитывается коэффициент трансформации. При идеальных условиях он равен нулю. Если происходит просадка или скачок в сети, то стабилизатор его выравнивает. Эта зависимость отображена в таблице.

В данном случае минимальное напряжение равняется 180В, что соответствует коэффициенту 1,2. Если же значение равняется 170В, используется коэффициент 1,3.

Определяем мощность:

7,5 умножить на 1,2 = 9 кВт

Однако всегда необходимо оставлять запас мощности. Поэтому полученное число умножаем на коэффициент запаса, который равняется 1,25:

9 умножить на 1,25 = 11,25 кВт

При таких показателях нужно выбирать стабилизатор с мощностью от 12 кВт.

Пример выбора стабилизатора напряжения для трехфазной сети

В результате из имеющегося ассортимента стабилизаторов выбирается наиболее подходящий вариант с мощностью выше полученного значения.

  • ГЛАВНАЯ
  • УСЛУГИ
  • ГАРАНТИЯ
  • ОПЛАТА и ДОСТАВКА
  • КОНТАКТЫ
  • ВОПРОСЫ-ОТВЕТЫ

© 2007-2021 Интернет-магазин Стабилизатор Вольт
Стабилизаторы напряжения, инверторы, ИБП, АКБ.
Энергия, Rucelf, Voltron, Classic, Ultra, Штиль.

Что такое КПД бытовых отопительных котлов, как он рассчитывается и от чего зависит

КПД (коэффициент полезного действия) отопительного котла – это соотношение объема потребляемого топлива к объему выделяемого тепла. КПД даже наиболее эффективных современных моделей водогрейных котлов не может быть 100% в виду теплопотерь внутри котла, недостаточной теплопроводности металлов или несовершенства принципа работы. Кроме того, эффективность одной и той же модели газового котла зависит и от нагрузки: указанный в паспорте КПД является реальным не во всем диапазоне теплопроизводительности.

В статье мы разберем как правильно считать КПД, от чего он зависит и как увеличить эффективность уже приобретенного котла своими силами.

Читайте в статье

КПД-брутто и КПД-нетто

Не всё выработанное при сгорании топлива тепло направляется на нагрев теплоносителя, определенная часть расходуется на собственные нужды котлоагрегата: турбина, вентилятор или дымосос, циркуляционный насос, работа автоматики и электронного дисплея, работа электропривода (как вы уже поняли, в расчете используются все виды получаемой энергии, в том числе и электроэнергия, если котел энергозависимый).

С учетом этого принято разделять эффективность котла по выработанной теплоте (КПД-брутто) и отпущенной теплоте (КПД-нетто).

Такая классификация позволяет выделить степень технического совершенства котла – КПД-брутто или экономичность расхода топлива и электроэнергии – КПД-нетто.

Как рассчитать КПД котла отопления

Рассчитать значения можно несколькими способами. В европейских странах расчет КПД котла отопления принято производить по температуре отходящих газов (метод прямого баланса), то есть зная разницу между температурой окружающей среды и реальной температурой отходящих через дымоход газов. Формула довольно проста:

η бр = (Q1/Qi r ) 100%, где

  • η бр (читается «эта») – КПД котла «брутто»;
  • Q1 (МДж/кг) – к-во тепла, которое удалось аккумулировать, т.е. использовать в целях обогрева дома.
  • Qi r (МДж/кг) – общее количество тепла, выделяемое при сжигании топлива;

Например, если Q1 = 19 МДж/кг, Qi r = 22 МДж/кг, то КПД «брутто» = (19/22)*100 = 86,3%. Все замеры проводятся при уже установившемся, стандартном режиме работы котла.

Метод прямого баланса не учитывает теплопотери самого котлоагрегата, недожог топлива, отклонения в работе и прочие особенности, поэтому был придуман принципиально другой, более точный способ расчета – «метод обратного баланса». Используется уравнение:

η бр = 100 – (q2 + q3 + q4 + q5 + q6), где

  • q2 – потери тепла с уходящими газами;
  • q3 – потери тепла вследствие химического недожога горючих газов (применимо к газовым котлам);
  • q4 – потери тепловой энергии с механическим недожогом;
  • q5 – теплопотери от наружного охлаждения (через тепплообменник и корпус);
  • q6 – потери тепла с физическим теплом шлаков, удаляемых из топки.

КПД «нетто» котла отопления согласно методу обратного баланса:

η нетто = η бр — Q с.н , где

  • Qс.н – общий расход тепловой и электрической энергии на собственные нужды в % выражении.

Реальный КПД практически всегда будет отличаться от заявленного производителем, поскольку зависит от правильности монтажа котла и отопительной системы, системы дымоудаления, качества электроснабжения и т.д. Измеряется он, соответственно, уже на месте.

От чего зависит тепловая эффективность котлоагрегатов

Коэффициент полезного действия отопительных котлов равен не при любой мощности, существует пропорциональная зависимость от нагрузки: увеличение тепловой нагрузки (к-ва сжигаемого топлива) увеличивает и теплопотери через корпус или дымоход. Так же точно эксплуатация на минимальной мощности не всегда обеспечивает полноценное сгорание топлива, что приводит к снижению КПД.

Например, в сервисной инструкции к газовым котлам Protherm Волк KSO мощностью 12,5 кВт и 16,0 кВт указано, что при работе на максимальной мощности (12,8 кВт и 16,3 кВт соответственно) КПД равен 92,5 %, в то время как при работе с минимальной нагрузкой (4,5 кВт и 5,8 кВт) – снизится и составит всего 78,4 %.

Это одна из основных причин, почему стоит осознанно подходить к выбору мощности котлоагрегата. Наиболее оптимальная работа в большинстве моделей достигается при нагрузке в диапазоне 60-90% от максимальной мощности.

В остальном коэффициент полезного действия зависит исключительно от технологического совершенства модели, направленного на снижение вышеописанных q2-6 (снижение температуры отходящих газов, эффективное сжигание топлива, модулируемые горелки, теплоизоляция и т.д.), а также от качества обслуживания и эксплуатации котлоагрегата. Чистота теплоносителя, регулярная чистка и промывка – все это со временем серьезно влияет на КПД.

Как выбрать комнатный термостат и экономить до 30% в месяц на отоплении

Значения современных котлов в зависимости от вида топлива

ФотоВид котла в зависимости от сжигаемого топливаСредний КПД, %
Газовые
— Конвекционные87-94
— Конденсационные 104-116 *
Твердотопливные
— Дровяные75-87
— Угольные 80-88
— Пеллетные 80-92
Жидкотопливные
— На дизельном топливе 86-91
— На мазуте 85-88
Электрические ТЭНовые99-99,5

* С точки зрения физики КПД не может превышать 100%: больше тепловой энергии, чем выделяется при сжигании топлива получить невозможно. Однако все зависит от того, как считать. Есть два определения:

  • низшая теплота сгорания – тепло, полученное при сгорании топлива, когда продукты сгорания просто удаляются через дымоход;
  • высшая теплота сгорания – теплота с учетом в том числе и энергии, содержащиеся в водяном паре – одном из продуктов сгорания горючих газов.

Газовые конденсационные котлы дополнительно аккумулируют и тепловую энергию конденсата, образующегося из продуктов сгорания газа и оседающего на дополнительном теплообменнике. Таким образом, существенная часть тепла не «вылетает в трубу», а температура отходящих газов практически равна атмосферной.

Согласно действующим нормам, как в России, так и в Европе, КПД отопительных котлов рассчитывается по низшей удельной теплоте сгорания, поэтому учет дополнительного тепла, извлекаемого из конденсата, приводит к значениям более 100%. При расчете по высшей теплоте сгорания КПД конденсационных газовых котлов равен 96-98% в зависимости от модели и типа монтажа: у настенных котлов КПД обычно выше, чем у напольных (это относится ко всем газовым котлоагрегатам).

Также из таблицы можно заметить, что средний КПД твердотопливных котлов также отличается в зависимости от используемого топлива, связанно это со степень сжигания топлива, его теплоотдачей, температурой горения и теплопотерями с физическим теплом шлаков, удаляемых из топочной камеры. Даже один и тот же твердотопливный котел может выдавать разный КПД при работе на разных видах топлива.

Как увеличить КПД газового котла

Повысить эффективность сжигания топлива вмешательством в техническое устройство котла практически невозможно, тот же слой теплоизоляции установить не получится в виду банальной непредусмотренности производителем места под него. Кроме того, делать это своими руками запрещено. Тем не менее есть способы увеличить КПД газового котла, особенно, если это несовершенная модель старого образца:

  1. Готовый экономайзер для дымохода – заменяет определенный отрезок дымохода и предназначен для аккумуляции тепла отходящих через дымоход газов (некая имитация конденсационных котлов). Однако нужно точно посчитать параметры экономайзера и требования к дымоходу, чтобы сохранить необходимую тягу и предотвратить обратную тягу, например, при сильном ветре. Цена вопроса – 1 700-2 500 руб. Сэндвич-сетка экономайзер для трубы дымохода.
  2. Самодельный экономайзер – практически идентичный с вышеописанными готовыми изделиями. Как сделать эффективный экономайзер мы уже описывали в одной из предыдущих статей .
  3. Чистка котла и промывка теплообменника – это регулярные меры обслуживания, бессмысленные для новых котлоагрегатов, но крайне эффективные для эксплуатируемых хотя бы несколько сезонов. Дело в том, что во время эксплуатации внутри теплообменника образуются накипь и прочие солевые отложения, забиваются внешние ребра теплообменника, горелки и запальник. Все это приводит к увеличению расхода газа, снижению теплопроизводительности, соответственно, снижению КПД (часто до 20-30%). Как и насколько часто необходимо чистить газовый котел мы также уже разбирали ранее .
  4. Газовый фильтр – устанавливается он перед запорной арматурой газовой магистрали и предназначен для очистки газа от мусора и примесей, иногда встречающихся в составе. Это не только способствует снижению сажеобразования, но и, повышая качество топлива, незначительно снижает теплопотери при недожоге.

Остальные же методы заключаются в правильных пуско-наладочных работах, которые проводятся единожды, при первом запуске котла, исключительно специалистами. При правильной изначальной настройке обеспечивается КПД, гарантируемый производителем. Важно понимать, что повысить этот показатель вмешательством в техническое устройство самого котла невозможно, и уж тем более – не безопасно.

Читайте также:  Коньковый уплотнитель для профлиста: виды, как выбрать, способы монтажа
Оцените статью
Добавить комментарий