Как рассчитывают коэффициент линейного расширения бетона?

Как рассчитывают коэффициент линейного расширения бетона?

Для того чтобы построить прочное здание, специалисты определяют коэффициент линейного расширения бетона. Так строитель может узнать, на сколько изменится в длину материал после нагревания. Такие расчеты позволяют избежать преждевременной деформации постройки, появление трещин и увеличить эксплуатационную стойкость сооружения.

  1. Что это такое?
  2. Как рассчитать показатель температурного расширения?
  3. Температурный показатель
  4. Теплоемкость
  5. Как регулировать?

Что это такое?

Термин коэффициент расширения бетона обозначает, как сильно расширяется строительный материал при увеличении температуры.

Понятие связано с теплоемкостью и теплопроводностью раствора. Бетон, который может расширяться, имеет в составе добавки или напрягающий цемент. Таким образом, в результате получается стойкая смесь, которая способна изменяться в размере. Кроме этого, для создания конструкции необходимы швы, поддерживающие блоки. Если возникает слишком большой температурный перепад, то бетон может потрескаться. Для этого стараются правильно подобрать состав материала с высоким коэффициентом, поэтому можно предотвратить появление трещин.

Как рассчитать показатель температурного расширения?

Можно самостоятельно измерить расширение. Для этого измеряется исходная длина. После температура повышается на 1 градус. Стоит помнить, что уровень тепла должен быть одинаковый по всему периметру. После уточняют величину удлинения. Для микроизменений используют микроскоп. Кроме этого, коэффициент теплового расширения бетона можно вычислить по формуле: l=l0(1+α⋅ΔT). В этом уравнении l обозначает расширение, ΔT — температуру, при которой произошли изменения, а l0 — начальная длина.

Температурный показатель

Коэффициент можно найти в таблице, в которой даются средние значения. По табличным данным для бетона этот показатель равен 0,00001 (ºС)-1. Так, при 80 градусах увеличение будет 0,8 мм/м. Но такие табличные данные не являются довольно точными, так как во всех схемах предоставлены усредненные значения. Потому желательно самостоятельно измерять или рассчитывать показатели.

Данный показатель для каждого вида материала будет отличаться.

Теплоемкость

Коэффициент температурного расширения неразрывно связан с теплоемкостью, используемых при строительстве. Под этим термином подразумевает определенное количество тепла, которое нужно смеси для того, чтобы поднять температуру. Так как выделяют несколько типов растворов, то и коэффициент будет меняться от наполнителей. Так, теплоемкость воздушно-сухого бетона равняется 1,35 Вт (м*°С). Это говорит о том, что показатель высокий и потому нужен дополнительный утеплитель. У пористых смесей значение теплоемкости низкое (0,35—0,75 ВТ).

Данный коэффициент зависит и от теплоемкости материала.

Как регулировать?

Значение зависит от таких факторов:

  • температуры;
  • класс;
  • наполнителя.

Заполнитель и цемент имеют разный температурный коэффициент. Потому при нагревании и расширении может происходить деформация и появляются трещины. Для того чтобы это не произошло применяют специальные швы. Кроме этого, увеличивают армирование строительной конструкции. Бетон делят на отдельные блоки. Но эти методы дорогостоящие и не всегда эффективны. Потому для результата используют напрягающие и расширяющие вяжущие.

Таблица: Температурный коэффициент линейного расширения металлов, твердых веществ, жидкостей

Коэффициент теплового расширения
β = 1 V ( d V d T ) p >left(
>right)_

>

Размерность−1
Единицы измерения
−1
СГС−1

Коэффицие́нт теплово́го расшире́ния
— физическая величина, характеризующая относительное изменение объёма или линейных размеров тела с увеличением температуры на 1 при постоянном давлении. Имеет размерность обратной температуры. Различают коэффициенты объёмного и линейного расширения.

Коэффициент линейного теплового расширения

α L = 1 L ( ∂ L ∂ T ) p ≈ Δ L L Δ T =>left(>right)_

approx >> , К −1 (°C−1) — относительное изменение линейных размеров тела, происходящее в результате изменения его температуры на 1 К при постоянном давлении.
В общем случае, коэффициент линейного теплового расширения может быть различен при измерении вдоль разных направлений. Например, у анизотропных кристаллов, древесины коэффициенты линейного расширения по трём взаимно перпендикулярным осям: α x ; α y ; α z ;alpha _;alpha _> . Для изотропных тел α x = α y = α z =alpha _=alpha _> и α V = 3 α L =3alpha _> .

Например, вода, в зависимости от температуры, имеет различный коэффициент объёмного расширения:

  • 0,53·10−4 К-1 (при температуре 5—10 °C);
  • 1,50·10−4 К-1 (при температуре 10—20 °C);
  • 3,02·10−4 К-1 (при температуре 20—40 °C);
  • 4,58·10−4 К-1 (при температуре 40—60 °C);
  • 5,87·10−4 К-1 (при температуре 60—80 °C).

Для железа коэффициент линейного расширения равен 11,3×10−6 K−1[1].

Для сталей

Таблица значений коэффициента линейного расширения α, 10−6K−1[2]

Марка стали20—100 °C20—200 °C20—300 °C20—400 °C20—500 °C20—600 °C20—700 °C20—800 °C20—900 °C20—1000 °C
08кп12,513,414,014,514,915,115,314,712,713,8
0812,513,414,014,514,915,115,314,712,713,8
10кп12,413,213,914,514,915,115,314,714,812,6
1011,612,613,014,6
15кп12,413,213,914,514,815,115,314,113,213,3
1512,413,213,914,414,815,115,314,113,213,3
20кп12,313,113,814,314,815,120
2011,112,112,713,413,914,514,8
2512,213,013,714,414,715,015,212,712,413,4
3012,112,913,614,214,715,015,2
3511,111,913,013,414,014,415,0
4012,412,614,513,313,914,615,3
4511,912,713,413,714,314,915,2
5011,212,012,913,313,713,914,513,4
5511,011,812,613,414,014,514,812,513,514,4
6011,111,913,514,6
15К12,012,813,613,814,0
20К12,012,813,613,814,2
2212,612,913,313,9
А1211,912,513,614,2
16ГС11,112,112,913,513,914,1
20Х11,311,612,513,213,7
30Х12,413,013,413,814,214,614,812,012,813,8
35Х11,312,012,913,714,214,6
38ХА11,012,012,212,913,5
40Х11,812,213,213,714,114,614,812,0
45Х12,813,013,7
50Х12,813,013,7

Что такое коэффициент расширения бетона?

Вопрос. Здравствуйте! Подскажите пожалуйста, что такое коэффициент расширения бетона? Какое его практическое применение? Спасибо!

Ответ. Добрый день! В строительной практике применяется коэффициент температурного расширения бетона. Его значение определяет отклонение линейных размеров бетонной плиты (бетонного блока) при изменении температуры окружающей среды.

Поэтому данный параметр еще называют – коэффициент линейного расширения бетона. Среднее числовое значение коэффициента линейного расширения, которое используется проектировщиками для расчетов, оговорено в нормативном документе СНиП 2.06.08-87 «Бетонные и железобетонные конструкции гидротехнических сооружений» и составляет 0,00001 °С-1 (Градус Цельсия в минус первой степени).

Чтобы узнать на сколько увеличится размер бетонного блока необходимо перемножить: величину линейного размера, коэффициент теплового расширения бетона и разницу температуры. Например, бетонный блок длиной 550 мм, при нагреве на 40 градусов Цельсия увеличится на: 550х0,00001х40=0,22 мм.

Практическое применение коэффициента расширения бетона

Долговечность бетонных сооружений испытывающих значительные перепады температуры зависит от коэффициента линейного расширения заполнителя (щебень, гравий, известняк, мраморная крошка и пр.) и разницы между коэффициентами линейного расширения заполнителя и цементного теста.

При этом коэффициент расширения заполнителя определяет коэффициент теплового расширения бетона. Следовательно, для строительства бетонных сооружений работающих в условиях значительного перепада температуры, необходимо подбирать горные породы (заполнитель) обладающие коэффициентом расширения ниже, чем коэффициент расширения цементного камня.

К таким горным породам относится широко применяемый гранит (коэффициент расширения 0,0000074 °С-1), базальт (коэффициент расширения 0,0000065 °С-1)и известняк (коэффициент расширения 0,000008). К не рекомендованным горным породам относятся: калиевые полевые шпаты, кальцит, мрамор и другие горные породы с большим количеством монокристаллов.

Вывод. Так как в частном строительстве в качестве наполнителя, как правило, используется гранитный, гравийный или известняковый щебень вы можете не обращать внимания на коэффициент расширения бетона – долговечность вашего сооружения не зависит от данной характеристики.

Отрицательный коэффициент теплового расширения

Основная статья: Negative thermal expansion

Некоторые материалы при повышении температуры демонстрируют не расширение, а наоборот, сжатие, т. е. имеют отрицательный коэффициент теплового расширения. Для некоторых веществ это проявляется на довольно узком температурном интервале, как, например, у воды на интервале температур 0…+3,984 °С, для других веществ и материалов, например фторид скандия(III), вольфрамат циркония (ZrW2O8)[3], некоторых углепластиков интервал весьма широк. Подобное поведение демонстрирует также обычная резина. При сверхнизких температурах аналогичным образом ведут себя кварц, кремний и ряд других материалов. Также существуют инварные сплавы (ферро-никелевые), имеющие в некотором диапазоне температур коэффициент теплового расширения, близкий к нулю.

Жароупорные свойства портландцементного камня

Усадка для жароупорного бетона является важным показателем, так как такой бетон (в отличие от обычных огнеупорных изделий) предварительно не обжигается, а подвергается нагреванию непосредственно в элементах конструкции. Следовательно, вся усадка жароупорного бетона происходит в рабочем состоянии, т. е. уже в процессе эксплуатации теплового агрегата. При нагревании в бетоне возникают напряжения, зависящие от таких факторов, как термическое расширение или усадка составляющих компонентов, температура и скорость нагрева, упруго-пластические свойства и предельные деформации составляющих компонентов, относительное количество в бетоне вещества, претерпевающего усадку при нагревании, зерновой состав и максимальная крупность зерен заполнителя.

Вследствие внутренних напряжений при нагреве жароупорного бетона могут возникать не только упругие, но также пластические и остаточные деформации, а при этом нарушается структура, что сказывается на свойствах жароупорного бетона и в том числе и на усадке.

В температурном интервале от 600 (700) до 800° кривая усадки имеет примерно горизонтальный участок, т. е. усадка не увеличивается с повышением температуры. Очевидно, в этом интервале структура бетона видоизменяется. Действительно, прочность бетона в этом интервале снижается наиболее резко. При температурах выше 800° происходит дальнейшее «разрыхление» структуры бетона и прочность его снижается до минимума примерно при температуре 1000°.

Кажущаяся усадка бетона заметно уменьшается или даже наоборот—бетон как бы увеличивается в объеме. Очевидно, этому соответствует и поведение цементного камня, т. е. наблюдаемое иногда уменьшение усадки при температуре 1000° по сравнению с усадкой при 800°. При температурах 800—1100° линейная усадка жароупорных бетонов на портландцементе составляет от 0,2 до 0,7%.

Рис. 59 Коэффициент линейного термического расширения жароупорного бетона на портландцементе с шамотным заполнителем и его составляющих в зависимости от температуры нагрева: 1—шамот; 2—бетон; 3—портландцемент с 25% тонкомолотого шамота.

Из графика (рис. 59) видно, что коэффициент термического расширения шамота в интервале температур 300—900° колеблется от и 6 10-6 до 8- 10-6. Коэффициент термического расширения жароупорного бетона на портландцементе с шамотным заполнителем соответствует коэффициенту термического расширения шамота и составляет 5- 10-6— 8 — 10-6, что свидетельствует о том, что термическое расширение бетона в большой степени зависит от заполнителя. Коэффициент термического расширения жароупорного бетона на портландцементе с заполнителем из отвального доменного шлака в интервале от 200 до 700° составляет от 8- 10-6 до 11 — 10-6, а для бетона на заполнителе из каширского котельного шлака — 4-10-6—5 — 10-6.

  • Назад
  • Вперёд

Примечания

  1. Температурный коэффициент линейного расширения на портале Ti-temperatures.ru
  2. Зубченко А. С., Колосков М. М., Каширский Ю. В. и др.
    Марочник сталей и сплавов. — Машиностроение, 2003. — С. 585. — 784 с.
  3. Mary, T. A. (1996-04-05). «Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8». Science272
    (5258): 90–92. DOI:10.1126/science.272.5258.90. Bibcode: 1996Sci…272…90M. Проверено 2008-02-20.

Примечания[ | ]

  1. Температурный коэффициент линейного расширения на портале Ti-temperatures.ru
  2. Зубченко А. С., Колосков М. М., Каширский Ю. В. и др.
    Марочник сталей и сплавов. — Машиностроение, 2003. — С. 585. — 784 с.
  3. Mary, T. A.; J. S. O. Evans; T. Vogt; A. W. Sleight.
    Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8 (англ.) // Science : journal. — 1996. — 5 April (vol. 272, no. 5258). — P. 90—92. — doi:10.1126/science.272.5258.90. — Bibcode: 1996Sci…272…90M.

Понятие и общие сведения

Коэффициент линейного расширения (КЛР) – это название одной из разновидностей коэффициентов теплового расширения материалов. Эти группы коэффициентов относятся к физическом величинам, описывающим относительное изменение объёмных характеристик тела и/или его линейных размеров при повышении температуры на один градус Кельвина при давлении равном константе. Значение коэффициента линейного расширения обладает размерностью обратной температуры. Наиболее употребляемыми являются коэффициенты объёмного и линейного расширения. Определенные материалы не расширяются, а, напротив, сжимаются при нагревании. Таким образом, коэффициент линейного расширения таких материалов является отрицательным числом. Речь идет, например, о воде, КЛР которой отрицателен в интервале температур от нуля до 3,984 градусов С. У некоторых соединений негативный коэффициент линейного расширения наблюдается в более широком интервале температур, например вольфрамат циркония, определенные углепластики, а также многие марки резины. Кроме того, разработаны марки ферро-никелевых сплавов, которые демонстрируют практически нулевой коэффициент линейного теплового расширения в определенных интервалах температур.

Теплофизические свойства бетонов


Образцы с разной теплофизикой Основные свойства бетона, связанные с воздействием на него тепловой энергии, это теплоемкость, теплопроводность и весьма важный в сфере строительства коэффициент линейного расширения. Без учета данных характеристик бетона невозможно добиться создания прочной конструкции здания, не склонной к разрушению под воздействием температурных колебаний.

Теплопроводность.

Теплопроводность бетона играет существенное значение при определении его строительно-физических качеств. Уровень теплопроводности зависит от структуры составляющих бетона и его строения в целом. Да значение данной характеристики оказывает влияние несколько факторов, среди которых наибольшее значение имеют влажность бетона и его температура. Чем большее количество влаги будет содержаться в бетоне и чем до большей температуры он будет нагрет, тем большей теплопроводностью он будет обладать. При проведении практических расчетов во внимание также принимается значение интегральной пористости. Смысл этого показателя состоит в определении объемного веса бетона при температуре +25С в высушенном до неизменяемого веса состоянии (рис. 1).

Кроме того, в строительной практике также может быть использована для расчета теплопроводности формула Б. Н. Кауфмана:

где под корнем стоит фиксированный коэффициент при указанных выше условиях: +25С и полная просушка. Измеряется это значение в ккал/м-ч-град, для высушенного бетона объемный вес выражается в т/м3.

Между тем, приведенная формула не может быть признана единственно верным способом расчета теплопроводности бетона, т.к. в ней не учитываются показатели пористости бетона, т.е. данные о распределении пор по типоразмеру, о степени сообщаемости или замкнутости. Поэтому с помощью данной формулы наиболее близкие к фактической действительности данные можно получить лишь в том случае, когда на стройке используются бетоны одинакового строения и созданные на заполнителях идентичного строения. Приводить здесь и использовать на практике универсальную и наиболее точную формулу для вычисления фактического уровня теплопроводности бетона не имеет смысла, поскольку она учитывает абсолютно все характеристики бетона. Получить подобные данные в условиях индивидуального жилищного строительства весьма проблематично, да и бессмысленно, т.к. при малых масштабах стройки и небольших конструкционных нагрузках небольшая ошибка в значении теплопроводности бетона особой роли не играет.

Коэффициент температурного расширения и теплоемкость бетона.

Под коэффициентом температурного расширения бетона в строительной практике принято понимать величину отклонения физических размеров бетона при изменении его температуры. Если упростить определение, то коэффициент расширения помогает определить, насколько увеличатся длина и ширина бетонного блока, если температура воздуха повысится на сколько-то градусов. Непринятие в расчет этого показателя моет привести к разрушениям возведенных из бетона конструкций при сезонных колебаниях температур.


Тепловое расширение способно привести к растрескиванию

Показатели коэффициентов температурного расширения бетона и стали приблизительно одинаковы, что широко используется при создании железобетонных конструкций высокой прочности.

От показателя теплоемкости бетона зависит скорость прогрева бетона до нужной температуры, а значит, и до нужных физических характеристик. Без учета теплоемкости зачастую попросту невозможно рассчитать время подачи жидкого бетона на объект строительства, особенно в холодное время года. Обычное значение этого показателя для большинства распространенных марок бетона колеблется в пределах от 0,28 до 0,33 ккал/кг .

Температурный коэффициент объемного расширения жидкостей

В таблице приведены средние значения температурного коэффициента объемного расширения β жидкостей при температуре 20 °С (если не указана иная).

Онлайн расчет температурного линейного расширения материалов, металлов, камней, пластиков

Если данный калькулятор был для Вас полезным, пожалуйста нажмите на одну или несколько социальных кнопочек. Благодарим за Ваш большой вклад в поддержку нашего проекта. Желаем Вам крепкого здоровья, счастья, успехов в профессиональной деятельности и дальнейшего процветания Вашего бизнеса. Огромное спасибо.

Больше интересного

Что же такое линолеум на сегодняшний день? Почему он до сих пор популярен и многое другое.

В данной статье рассматривается принцип работы фанкойлов.

Каждый кто задумывается над строительством дома так или иначе задавал себе вопрос – какой построить дом одноэтажный который получил название бунгало или дом в два или три этажа?

Расчет температурного линейного расширения

Так же, как и здание после строительства может дать «усадку», некоторые материалы, напротив, со временем увеличиваются или удлиняются. Это явление в физике называется тепловым расширением, потому что возникает оно по мере того, как на твердое тело воздействует высокая температура. Оно становится причиной увеличения площади, поэтому фактор расширения необходимо принимать во внимание при строительстве автомагистралей и зданий.

К примеру, при возведении дома с железобетонными элементами в климатических условиях, близким к тропическим или южным, строители могут не учесть вероятность линейного расширения. Впоследствии увеличенные металлические конструкции могут привести к повреждению других механизмов и преждевременному разрушению всей конструкции.

Подобный пример можно привести и при строительстве железнодорожных рельс. Нагреваясь под прямыми лучами солнечного света, молекулы металла расширяются и удлиняются. В холодное время года рельсы напротив, укорачиваются. Хотя это сложно заметить невооруженным взглядом, с целью безопасности нужно учитывать это при строительстве с применением не только металла, но и камня, даже пластика.

Как определить температурное линейное расширение

Чтобы избежать негативных последствий расширения материалов, используются специальные термометры. Они чувствительны к малейшим изменениям температуры. Но лучше предусмотреть возможные изменения и перестраховаться еще на стадии планирования производства. Для этого разработан онлайн-калькулятор, который моментально демонстрирует:

  • коэффициент линейного теплового расширения;
  • удлинение по осям Х, Y и Z;
  • величину, на которую удлиняется материал при заданной температуре.

Все, что нужно сделать для этого – выбрать из выпадающего списка нужный материал, выбрать его параметры: толщину, дину и ширину. Если нужно конкретно узнать его состояние при той или иной температуре, можете выбрать и эту функцию на сайте. Отметим, расчеты проводятся относительно начальной температуры материала 0°C. Ответы выдаются на анализе коэффициентов линейного теплового расширения, и расчетам, которые уже проведены и запрограммированы на сайте. Система реагирует на изменения и самостоятельно выполняет подсчет.

Какие материалы чаще всего подвергаются расширению

Прежде всего, это – металлы: алюминий, купрум, медь. Среди камней можно отметить гранит базальт, кварцит и даже кирпич. Аналогично на высокие температуры реагируют дерево, сложные штукатурки и стекло. Из вышеперечисленных материалов наименьший коэффициент теплового расширения имеют:

  • клинкерный и стеновой кирпич;
  • дерево;
  • штукатурка;
  • базальт;
  • стеновой кирпич.

Для сравнения, наибольший показатель – у алюминия, стали и меди. К примеру, КТЛР алюминия составляет 24•10-6 1/град, что в 2 раза больше, чем у стали. Поэтому монтаж трубопровода невозможен без предварительных расчетов, особенно если планируется использовать алюминиевые трубы для горячего водоснабжения или отопления. Изменение длины трубопровода при перепадах температуры определяется по формуле

dL = a • l • (tmax – tc), мм, где:

  • а – КТЛР материала, из которого изготовлена труба или другое изделие;
  • tmax – наибольшая температура, которой достигает теплоноситель;
  • tс – температура окружающей среды на момент установки конструкции;
  • l – длина трубопровода.

Также есть специально составленные таблицы значений среднего температурного коэффициента линейного расширения различных материалов. Но прибегать к ним и сложным расчетам не обязательно, если под рукой есть интернет и безошибочное решение можно получить с помощью калькулятора за считанные минуты.

Как рассчитывают коэффициент линейного расширения бетона?

Библиографическая ссылка на статью:
Калинина В.А., Макарова Л.В., Тарасов Р.В. Влияние коэффициентов температурного линейного расширения в системе «покрытие-подложка» на растрескивание покрытий // Современные научные исследования и инновации. 2015. № 5. Ч. 1 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2015/05/53084 (дата обращения: 12.01.2021).

Одним из наиболее распространенных видов разрушения отделочных покрытий цементных бетонов является растрескивание, основной причиной которого служит образование внутренних напряжений в результате усадки покрытий. Усадочные напряжения отделочных покрытий могут суммироваться с напряжениями, которые возникают при воздействии климатических факторов в процессе их эксплуатации, либо, наоборот, релаксировать [1…7]. Ввиду этого, для оценки монолитности отделочного слоя необходимо изучение напряженного состояния покрытий.

Расчет напряжений, возникающих в покрытиях, при изменении температуры, проводился по следующей формуле:

где α1 – термический коэффициент линейного расширения ТКЛР покрытия, 1/град;

ΔT – разность температур, град;

Е – модуль упругости покрытия, МПа;

μ – коэффициент Пуассона.

В качестве подложек рассматривались материалы, характеризующиеся различным значением ТКЛР: тяжелый бетон, керамзитобетон, керамзитовый раствор, бетон на известняке. Значения ТКЛР для рассматриваемых материалов представлены в табл.1. Среднемесячную температуру воздуха принимали в соответствии с СНиП 23-01-99 * «Строительные нормы и правила. Строительная климатология» для условий г. Пензы [8]. В качестве объектов исследования в работе использовались ПВАЦ и полимеризвестковые покрытия.

На рис.1-3 представлены расчетные данные изменения напряжений в покрытиях в результате сезонных колебаний температуры воздуха. Напряжения представляют собой алгебраическую сумму термических напряжений σt и растягивающих напряжений, возникающих в покрытиях в процессе отверждения σo, т.е.

Напряжения, возникающие в покрытиях в процессе отверждения, фиксировались автоматическим измерителем деформаций АИД-4.

Таблица 1. Значения термических коэффициентов линейного расширения

Значения ТКЛР·10 6 , 1/град

Керамзитобетон состава (по объему) 1:1,5:1,5

Бетон на известняке

Керамзитовый раствор состава (по объему)1:2,5

Анализ данных, приведенных на рисунке 1, свидетельствует о том, что покрытия ПВАЦ независимо от типа подложки в течение года воспринимают растягивающие температурные напряжения. Максимальные значения напряжений характерны для ПВАЦ покрытий на подложке из тяжелого бетона в ноябре-марте месяце, составляющие σ=(0,023-0,026) МПа. Однако, принимая во внимание, что растрескивание покрытий происходит когда внутренние растягивающие напряжения будут больше или равны когезионной прочности, трещинообразование ПВАЦ покрытия наблюдаться не будет, так как величина его когезионной прочности в этот период составляет R=0,45 МПа.

Рисунок 1 – Сезонные колебания температурных напряжений для ПВАЦ покрытий

Применение в качестве подложки керамзитового раствора приводит к снижению температурных напряжений, т.е. покрытие как бы «разгружается». Максимальные суммарные напряжения на подложке из керамзитового раствора составляют σ =0,007 МПа.

На рисунке 2 представлены расчетные данные изменения температурных напряжений в полимеризвестковых покрытиях в результате сезонных колебаний температуры воздуха. В виду того, что ТКЛР полимеризвесткового покрытия по сравнению с подложками имеет меньшее значение, напряжения, возникающие в покрытии при изменении температуры, будут растягивающими. Максимальная величина напряжений характерна для ноября-марта месяца независимо от типа подложки. Наибольшие значения напряжений наблюдаются для полимеризвестковых покрытий на подложке из тяжелого бетона. Суммарные напряжения составляют σ =(0,031-0,039) МПа.

На рисунке 3 представлена зависимость изменения внутренних напряжений от действия температуры в течение года для покрытий с учетом их влажности. Результаты исследований показывают, что увлажнение покрытий приводит к уменьшению значения ТКЛР. Так, для ПВАЦ покрытий при влажности 20% значение ТКЛР составляет 3,00×10 -6 1/град, в то время как для сухого – 8,43×10 -6 1/град. Результаты расчетов свидетельствует, что увлажнение покрытий приводит к значительному увеличению значений растягивающих температурных напряжений. Так, суммарные напряжения для ПВАЦ покрытий составляют σ=(0,045-0,056)МПа, а для полимеризвестковых покрытий σ=(0,042-0,055)МПа.

Анализ полученных результатов дает возможность предполагать, что вследствие разности термических коэффициентов линейного расширения покрытий и подложки и в результате комплексного воздействия внешних факторов в процессе эксплуатации вполне вероятно трещинообразование рассматриваемых защитно-декоративных покрытий. При этом максимальная величина напряжений, возникающих в покрытиях, будет наблюдаться при нанесении их на подложки из тяжелого бетона. Это необходимо учитывать при проектировании видов отделки фасадов зданий.

Библиографический список

  1. Макарова, Л.В. Повышение трещиностойкости защитно-декоративных покрытий наружных стен зданий [Текст] / Л.В. Макарова: канд. диссертация. – ПГУАС, 2004.-153 с.
  2. Логанина, В. И. К методике оценки трещиностойкости защитно-декоративных покрытий [Текст] / В.И. Логанина, Л.В. Макарова // Пластические массы .- 2003.- № 4.- С. 43-44.
  3. Логанина, В.И. О связи трещиностойкости лакокрасочных покрытий с качеством их внешнего вида [Текст] / В.И. Логанина, Л.В. Макарова // Современные научные исследования и инновации. – Апрель 2014. – № 4 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2014/04/33836 (дата обращения: 22.04.2014).
  4. Логанина, В.И. Методика оценки стойкости защитно-декоративных покрытий цементных бетонов [Текст] / В.И. Логанина, Л.В. Макарова // Современные научные исследования и инновации. – Май 2014. – № 5 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2014/05/34097 (дата обращения: 05.05.2014).
  5. Батынова, А.А. Повышение трещиностойкости отделочных покрытий [Текст] / А.А. Батынова, Л.В. Макарова, Р.В. Тарасов // Современные научные исследования и инновации. 2014. № 7 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2014/07/36945 (дата обращения: 31.07.2014).
  6. Логанина, В.И. Стойкость защитно-декоративных покрытий наружных стен зданий. / В.И. Логанина, Л.П. Орентлихер, Ю.А. Соколова.- М.: Издательство Ассоциации строительных вузов, 1999.-105 с.
  7. Северный, В.В. Кремнийорганические защитно-декоративные покрытия. / В.В. Северный, А.А. Зайцева, И.В. Тимофеева // Лакокрасочные материалы и их применение.-1973.-№6.-С. 37-38.
  8. СНИП 23-01-99* Строительные нормы и правила. Строительная климатология / Госстрой РФ.- М.: ГУПЦПП, 2000-57 с.

Количество просмотров публикации: Please wait

Связь с автором (комментарии/рецензии к статье)

Оставить комментарий

Вы должны авторизоваться, чтобы оставить комментарий.

Коэффициент армирования

  1. Нормы и требования
  2. Минимальная величина
  3. Формула расчета

Коэффициент армирования — один из самых значимых моментов при строительных работах. Полноценное знакомство с таблицей коэффициента армирования железобетонных конструкций на 1 м3 бетона оказывается крайне полезным для застройщиков и заказчиков. Обязательно надо интересоваться правилами расхода арматуры и ее расчета, требованиями СНиПа.

Нормы и требования

Коэффициент армирования — это важный процентный показатель, который обязательно должен учитываться при строительных работах. Он вычисляется как частное от деления суммарного сечения упрочняющих деталей на сечение бетонной массы, которая должна быть ими усилена. Правильный расчет всегда должен исходить из указаний СНиПа. Занижение показателя необратимо ухудшит свойства несущей конструкции.

Завышение же будет означать превышение нормативов по материалоемкости и удорожание строительных работ.

К армированию применимы положения СНиПа 2.03.01-84. Надо также учитывать приложение к этому документу, предназначенное для строений из монолитного железобетона и проектных материалов. Ключевые параметры эксплуатации усиливающих стержней и свойства этих блоков приведены в ГОСТе 10884, принятом в 1994 году. Строительные нормы и правила гласят, что расчет по предельным состояниям должен застраховать от:

  • любых разрушений конструкций при нормальной эксплуатации;
  • дестабилизации конструкционных форм;
  • чрезмерного нарастания усталости металла (в сравнении с обычной инженерной практикой).

Бетонное основание может быть оформлено с применением не менее чем 2 неразрывных каркасов. Их создают, фиксируя стержни внахлест. Подобное решение лучше всего показывает себя в частном домостроении. Промышленное и иное капитальное строительство в основном подразумевает сварочное соединение.

Но поскольку любая сварка ослабляет конструкции, нужно вводить поправочные коэффициенты, а какие именно, разберутся лишь технологи.

Минимальная величина

Наименьший допустимый показатель усиления железобетонных конструкций на 1 м3 бетона лучше всего представить в виде лаконичной таблицы.

Расположение элемента и его использование

Минимальный процент от сечения для бетонов до В15 включительно

Минимальный процент от сечения для бетонов от В20 до В22,5 включительно

арматура перекрывающих плит, поддерживающая их прочность при плоскостном изгибе; усилители несущих перемычек, расположенных выше проемов окон и дверей

вертикальная стенная арматура, поддерживающая крепость стены при внецентровом сжатии, в зависимости от соотношения общей длины конструкции и толщины монолита

Формула расчета

Но стандартная таблица выручает не всегда. Существует ряд ситуаций, когда усиление железобетона не может ограничиться несколькими типовыми показателями. В этих случаях правильно разобраться с величиной расхода арматуры помогут дополнительные вычисления. Определить процент армирования несложно. Массу каркаса следует поделить на массу монолитной заливки и увеличить результат в 100 раз. Такой подход отлично работает с:

  • балками;
  • колоннами;
  • основой фундамента;
  • капитальными стенами зданий.

Как рассчитать, сколько кубов бетона нужно на фундамент?

Строительство начинается с проекта. Даже небольшие сооружения рекомендуется предварительно зарисовать на бумаге, чтобы можно было наглядно увидеть пропорции и прикинуть расход материалов. Для серьезных строений нужна проектно-сметная документация, выполненная профессионалами, но, при возведении частного дома, дачи, забора или гаража, можно обойтись онлайн калькуляторами или готовыми решениями. Важнейшим вопросом при возведении конструкций является устройство надежного фундамента, а потому вопрос того, как рассчитать количество бетона на фундамент, является первостепенным.

Рассчитать бетон на фундамент несложно, если присутствует определенность с размерами и типом сооружения. Тип фундамента и его габариты должен определить опытный строитель, исходя из характеристик строящегося здания, типа грунта и глубины его промерзания в данной местности.

Ленточный

Наиболее популярным основанием для возведения частного дома считают ленточный фундамент. Он представляет собой своего рода замкнутую ленту из бетона, проходящую под всеми несущими стенами здания.

Как посчитать, сколько кубов бетона надо на фундамент? Калькуляторы, помогающие определить расход цементно-песчаного раствора для заливки, имеются на многих сайтах со строительной тематикой, один из таких представлен в конце данного материала. Чтобы вычислить объем в кубометрах, необходимо знать линейные размеры сооружения: высоту, ширину и общую длину основания.

Бетонирование ленточного основания происходит путем заливки готового цементно-песчаной смеси в деревянную опалубку с предварительно установленной арматурной сеткой. В раствор добавляют крупные фракции (гравий, щебень) для приобретения более высоких прочностных характеристик фундамента.

Размеры основания зависят от габаритов здания, которое планируется возводить. Обычно ширина фундаментной ленты имеет размер не менее 300 мм, высота наземной части — от 400 мм, а глубина может достигать 1500-2500 мм в зависимости от наличия грунтовых вод, глубины промерзания и желания оборудовать подвал. Ленточные фундаменты не рекомендуется устанавливать на пучинистых грунтах, если заглубление опалубки производится менее глубины промерзания.

Для средней полосы, при возведении небольших частных домов и бань, достаточно выполнить заглубление в пределах 1500 мм с высотой наземной части до 400 мм.

Длина фундамента будет равняться суммарной длине всех наружных стен, включая внутреннюю несущую стену, под которой также устанавливается основание. В итоге, получив все требуемые значения, можно рассчитать объем бетона для фундамента. Калькулятор в данном случае может и не потребоваться — достаточно перемножить все показатели в метрах и получить искомое число в кубических метрах.

Формула расчета выглядит так:

V=h*b*l, где:

  • V – объем раствора в м 3 ;
  • h – высота в м;
  • b – ширина в м;
  • l – длина ленты в м.

Например, для здания размером 6х6 м и одной внутренней несущей стеной, при высоте фундамента в 2 м и ширине 0,4 м, объем раствора для заливки получится: V=2*0,4*30=24 м 3 . При той же ширине и высоте фундамента, для дома размером 10х10 и двумя несущими внутренними стенами, вычисление будет выглядеть так: V=2*0,4*60=48 м 3 .

Данный расчет позволяет высчитывать почти точную кубатуру раствора, но следует помнить, что при транспортировке часть бетона теряется, а также при неплотной опалубке часть бетонного раствора может вытечь, но при этом существует дополнительный внутренний объем, занимаемый арматурным каркасом. Поэтому правильно будет ввести корректирующий коэффициент в сторону увеличения расчетного значения на 2%.

В итоге получаем более точную формулу расчета объема бетона для ленточного фундамента:

V=h*b*l + 0,02*(h*b*l)

Полученное значение округляется до целого числа. Для наших примеров уточненное вычисление будет выглядеть так: для дома 6х6 V=24+0,02*24=24,48 (25) м 3 , для дома 10х10 V=48+0,02*48=48,96 (49) м 3 .

Плитный

Плитный фундамент представляет собой сплошное монолитное основание под пятном застройки. Для его устройства используют бетон марки не ниже М100. Рассчитывают объем этого монолита довольно просто — достаточно перемножить длину, ширину и высоту плиты.

Заливка раствора из цемента и песка с добавлением крупных фракций для монолитной плиты производится на высоту не менее 100 мм. Таким образом, для плиты толщиной 100 мм получают следующие объемы бетона:

  • для дома 10х8 – 8 м 3 ;
  • для дома 9х9 – 8,1 м 3 ;
  • для дома 18х8 – 14,4 м 3 .

Этот расчет подходит для полностью ровных плит, но для придания основанию более высоких прочностных характеристик, часто устраивают дополнительные ребра жесткости в виде трапециевидных продольных балок. Поэтому правильный расчет плиточного фундамента должен содержать и объем заливки ребер жесткости.

Как посчитать кубы бетона на фундамент? Калькуляторы онлайн помогут бесплатно выполнить данные расчеты, можно обратиться к специальным таблицам, ну или самостоятельно посчитать требуемый объем бетона не сложно.

К уже полученному объему плиты необходимо добавить объем ребер жесткости, для чего используют формулу площади трапеции. Объем плитного фундамента с ребрами жесткости находят следующим образом:

  1. Вычисляют объем своей плиты: V=h*b*l.
  2. Находят площадь трапеции: S=h1*(a+c)/2, где h1 – высота ребра трапеции, а и с – длины оснований трапеции.
  3. Находят объем ребра жесткости и умножают на количество ребер: V1=S*l*n, где n – количество ребер жесткости.
  4. Полученные объемы складывают и получают общий объем требуемого бетона: Vобщ=V+V1.

Обычно усиление располагают в нижней части основания с шагом в 3000 мм. Они могут выполняться как исключительно продольные усилители, так и с пересечением, образуя квадраты. Обычно соотношение широкой части трапеции ребра жесткости относится к узкой части, направленной вниз, как 1,5:1. Для расчета плитного фундамента также предусматривают корректировку объема с коэффициентом погрешности в 2%.

Столбчатый

Данный тип фундамента представляет своего рода свайное поле, только опорные столбы не забиваются сваебоем, а заливают в подготовленные шурфы. Столбчатый фундамент позволяет получить надежное основание при минимальном расходе материала. Столбы могут иметь круглое и квадратное сечение, располагают их по периметру пятна застройки и в местах сочленения стен.

Заглубление столбчатого фундамента обычно превышает глубину промерзания для данного района, а наземная часть имеет высоту 400-500 мм. Конструкция здания может устанавливаться непосредственно на опорные столбы, но чаще всего по периметру устанавливают ростверк, который соединяет столбы в единое целое.

Чтобы посчитать требуемый для заливки столбчатого фундамента объем бетона, необходимо знать длину столба, площадь его сечения и количество столбов. Если предусматривается ростверк, потребуются его линейные размеры, расчет объема ростверка ведется таким же образом, как в варианте с ленточным фундаментом.

Чтобы высчитать объем столбов с квадратным или прямоугольным сечением, нужно использовать следующую формулу:

V=a*b*l*n, где a и b – стороны сечения столба, l – длина столба, n – количество столбов в фундаменте.

Для вычисления объема бетона для заливки столбов с круглым сечением, понадобится формула нахождения площади круга: S=3,14*R*R, где R – радиус. Получаем формулу вычисления объема столбов с круглым сечением:

V=S*L*n

Для получения общего объема бетона, требуемого для заливки столбов и ростверка, необходимо сложить уже полученные показатели, не забывая про коэффициент погрешности в 2%.

Расчет цемента на фундамент.

Коровин Сергей Дмитриевич

Магистр архитектуры, закончил Самарский Государственный Архитектурно-Строительный Университет. 11 лет опыта в сфере проектирования и строительства.

  • Пошаговая инструкция по установке ПВХ подоконника
  • Идеи и способы покраски лестницы в доме на второй этаж

–>

Все о строительстве и ремонте

2013–2021 © Самостоятельное строительство — сайт для тех, кто строит!

Советы опытных строителей, как рассчитать количество бетона на заливку ленточного фундамента

Прежде чем приступать к работам на строительной площадке, требуется провести ряд расчетов, среди которых важную роль отводят вычислению количества бетона, которое понадобится для возведения основания.

Базой для расчета является план фундамента строящегося дома. Заливка может производиться из бетонной смеси, смешиваемой непосредственно на стройплощадке, и тогда необходимый объем определяется по параметрам траншеи.

Это решение допустимо, если не требуется предварительной подготовки – подсыпки грунта или его замены, а необходимые строительные материалы находятся рядом. В таком случае смесь для заливки подготавливается на месте.

О том, как рассчитать объем бетона на заливку ленточного фундамента, расскажем в статье.

Какие данные потребуются?

Для расчета необходимо учитывать следующие аспекты:

  1. Высоту основания (h), то есть расстояние от подошвы до обреза. Стандарт – около шестидесяти сантиметров над поверхностью почвы плюс заглубление.
  2. Ширину (b). Она обычно зависит от массы здания, особенностей почвенной подушки, предполагаемой толщины стен.
  3. Суммарную длину фундамента (l) – протяженность, которая подсчитывается как сумма всех несущих конструкций, расположенных как снаружи, так и внутри.

Если подошва заглубляется на 1,6 м, то общий итог должен составлять с учетом высоты 2,2 м. Глубина определяется по особенностям почвы, также учитывается марка используемого бетона. Во внимание принимается тип здания и его назначение.

Подошва должна заглубляться ниже уровня промерзания, минимальное значение для этого – пятнадцать сантиметров.

При строительстве небольшого здания допускаются и приблизительные значения объема, однако если здание крупное или должно прослужить долгие годы, относиться к расчетам безалаберно не стоит.

Что нужно принимать во внимание при расчете?

Более точного определения количества затрачиваемой бетонной смеси позволяют добиться:

  1. Характеристики почвы, ее пучинистость.
  2. Коэффициент усадки бетона. Какой бы ни была смесь для заливки, она будет слегка сокращаться в объеме пока отвердевает. Количество раствора, который потребуется при возведении фундамента, должно быть больше, чтобы покрыть этот момент.

На то, какую марку цемента подобрать, а также сколько потребуется песка и дополнительных добавок, влияет еще и уровень, на котором располагается водоносный пласт.

Уточнить объем помогают поправочные коэффициенты, помимо этого погрешность вносят и некоторые другие аспекты вроде толщины подушки из гравия и песка или ширина установленной опалубки.

Коэффициент усадки бетона колеблется от 1,5 до 3 процентов. Обычно используют значение коэффициента 1,1. Это значит, что бетонной смеси должно быть как минимум на десять процентов больше, чем предполагаемый объем готового основания. Количество арматуры на объем необходимой бетонной смеси не оказывает особенного влияния.

Если почвенный слой недостаточно надежен, требуется подсыпка или даже замена. Такими бывают обломочные почвы, грунты с большим содержанием торфа, суглинки, а также супеси.

Слабые грунты требуют провести расчеты на предельные нагрузки, что помогает просчитать воздействие, которое почва в дальнейшем будет оказывать на основание. Прочнейшими являются скальные грунты, подходящими как подушка для основания считаются и крупнообломочные.

Формула и учет коэффициентов

Ленточный тип основания применяется как собственниками при возведении частного жилья, так и крупными компаниями. Сам по себе он является прямоугольной конструкцией, состоящей из арматурного каркаса и бетона.

Осуществлять расчет можно как при помощи программ на соответствующих сайтах в сети, так и самостоятельно.

Формула, позволяющая уточнить затрачиваемый объем: V (объем) = h (высота) * b (ширина) * l (длина ленты фундамента)

Использовать формулу только с этими параметрами можно только при заливке бетона в идеально жёсткую опалубку и на бетонную подготовку. Т.к. на кубатуру влияет множество факторов (коэффициент уплотнения, протечки опалубки, остаток бетона в трубах бетононасоса и т.п.).

Чтобы разобраться в вопросе, стоит рассмотреть пример:

  • у будущего основания длина 1 стены равна 30 метрам (24 м – длина основания под наружными стенами, 6 м – длина перемычки под 1й из внутренних стен);
  • ширина равна 0,4 метрам;
  • высота равна 1,5 метрам.

Расчет будет выглядеть так: 30*0.4*1,5 = 18 кубических метров бетонной смеси. Если необходимо добавить поправочный коэффициент 1,1, это делается вот так: 18 * 1,1 = 19,8 кубометра объем необходимого бетона.

Нельзя забывать о технических отверстиях, которые требуются для коммуникаций. Даже если кажется, что величина их незначительна, они занимают немало пространства. Обычно рекомендуется вычесть объем под них из полученного по формуле объема.

Вычисление объема выглядит не слишком сложным, однако требуется помнить о том, что конструкция основания может оказаться сложнее и отдельные элементы придется рассчитывать дополнительно. Влияют на конечный итог особенности составов, добавок, которые используются для упрочнения основания.

Эксперты считают, что при предварительном расчете допустимо увеличивать полученное значение на десять-двадцать процентов.

Как посчитать объем цемента для смешивания раствора?

Если раствор готовится на стройплощадке, а не заказывается готовым, дополнительно рассчитывается объем стройматериалов, которые для этого нужны. Существует таблица, позволяющая уточнить правильные пропорции:

Видео по теме статьи

3 способа расчета бетона для фундамента — в видео:

Заключение

Для строительства важно определить объем затрат стройматериалов и рассчитать точное количество требующейся бетонной смеси, иначе фундамент не сможет выполнять возложенные на него задачи.

В вычислениях используются не только параметры основания, описанные в проекте и плане, но и другие факторы – усадка и особенности почвенного слоя. Пропорции смешивания материалов помогают определить специальные таблицы.

Читайте также:  Как и чем резать кирпич?
Оцените статью
Добавить комментарий