Конек крыши: что это такое, расчет высоты, инструкция как сделать своими руками, видео и фото

Как рассчитать угол ската крыши

Чтобы построить кровлю со скатными плоскостями грамотно, предварительно следует определить оптимальный угол ската крыши. Чтобы выполнить такой расчет, необходимо узнать: от чего зависит значение этого показателя для кровли.

Скатные кровли

Имеющийся у скатных кровель угол ската крыши является их основным отличием от плоских кровель. Когда уклон крыши больше 10°, то она уже является скатной.

Если же значение угла ската менее 2,5°, такая кровля относится к плоским. Встречаются кровли, уклон которых больше 80°, но возводятся они достаточно редко.

Двускатная кровля

Значение угла кровли зависит от множества факторов, не всегда связанных с природными явлениями, особенно от характеристик применяемого для покрытия крыши стройматериала.

Чем угол наклона крыши больше, тем на нее будут действовать сильнее нагрузки ветром.

Рост значений кровельного уклона с 10° до 45° приводит к пятикратному росту ветровой нагрузки.

Однако если возвести крышу с небольшим углом наклона, то ветер, проникая под места стыковки кровельных материалов, просто может посрывать кровельные листы со своих мест.

С кровель с большим значением уклона скатных поверхностей гораздо быстрей уходит влага, и сходят снежные массы. Максимальные значения нагрузок масс снега установлены на скатных плоскостях в 30°.

На кровлях с 45° углом наклона скатных плоскостей достигается максимально полноценное схождение масс снега, а с кровель с меньшими углами массы снега легко сдуваются хорошим ветром.

Важно: если уклон скатной поверхности будет недостаточным, то дующий ветер может загонять дождевую воду под места стыков кровельных листов. Это явление и устанавливает минимально допустимое значение угла между кровельными скатами.

Так, для черепичин минимальное значение угла наклона — 22°, для шиферного покрытия – 30°, для гибких покрытий – 5°.

Получается, что обустроить кровлю в местности с обильными осадками лучше сразу со скатными поверхностями, расположенными под углом 45°.

Если осадков в месте расположения будущей кровли выпадает мало, то достаточно будет значения угла уклона в 30°.

Со средними показателями ветровой нагрузки справится крыша, имеющая наклон 35-40°, а в районах, где часто дуют сильные ветра, необходим угол уклона от 15°до 20°.

Как рассчитать угол уклона кровли

Чтобы обеспечить долгосрочную эксплуатацию и надежность строящейся крыши нужно изначально, еще на этапе планирования строительства кровли, правильно рассчитать ее уклон. Его размер зависит не только от конструктивных особенностей крыши, но и от типа, используемого на ней для покрытия стройматериала:

  1. При подсчете угла уклона крыши нужно учитывать климатические характеристики местности, в которой проводится ее установка.

Чем суше и теплее в месте возведения крыши, тем более пологой она может быть. Увеличение угла уклона скатных поверхностей, приведет к сокращению накопления снежных масс на крыше, следовательно, и снеговая нагрузка на кровлю будет сведена до минимума.

Однако у этого увеличения есть и обратная сторона. Больший угол ската крыши приводит к росту ветровой нагрузки, поэтому слишком крутую кровлю нельзя использовать в местах с преобладающими ветрами. Чаще всего уклон скатных поверхностей крыш находится в диапазоне 10° — 60°.

  1. Увеличивая угол ската крыши, значительно возрастает общая стоимость ее строительства.

Например, возводя крышу со скатным уклоном в 60°, материальные расходы увеличиваются в два раза, по сравнению с возведением плоской кровли. У крыши с наклоном 45°, будут в 1,5 раза расходы выше общей стоимости аналогичной плоской.

  1. Рассчитывать кровельный уклон необходимо как отношение между ½ заложения и общей высотой до конька, в этом случае уборка с кровли снежных масс не составит особого труда.
  2. Также необходимо учитывать, что в ендове наклон делается не менее 1%. Также нужно помнить, что если кровельный уклон планируется менее 10°, а кровля покрыта слоем гибких стройматериалов, то обязательно уложить для защиты на ее поверхность слой крошки – гравийной или каменной.

Толщина этого гравийного слоя делается не менее 1 см, а аналогичного слоя из каменной крошки — 0,3 см.

Для металлочерепичного или шиферного покрытия между настилами стыки необходимо обязательно герметизировать.

Рассчитывая угол ската крыши, необходимо учитывать, что от размера угла скатных поверхностей будет зависеть вид отведения атмосферной влаги.

Водоотведение в таких случаях бывает наружным (неорганизованным), и внутренним (организованным), а также смешанным.

Важно: необходимо помнить: отсутствует такое обустройство кровли, при котором удовлетворяются одновременно все требования, связанные с особенностями климата.

Поэтому при планировании углов скатов кровли необходимо найти равновесие. Также нужно учесть, что траты стройматериалов для строительства кровли возрастают пропорционально площади кровли, при этом существенно возрастает и ее общая стоимость.

Кровля из натуральной черепицы

Выбор кровельного материала

После расчета размера уклона подбирается нужный для покрытия крыши стройматериал. Здесь необходимо отметить, что штучные кровельные стройматериалы, такие как натуральная черепица и шифер, применяются для монтажа на скатных поверхностях с уклоном больше 20°. Если при использовании этих покрытий уклон крыши будет меньше указанного значения, то в межэлементные стыки покрытия будет попадать влага, которая за очень короткий срок приведет всю кровлю в непригодное для дальнейшей эксплуатации состояние.

Рулонные гибкие покрытия используются чаще для покрытия плоских кровель или крыш, угол скатных поверхностей у которых меньше 30°. Это связано с тем, что при больших значениях наклона, в результате действия высоких температур, такое покрытие может сползти с поверхности кровли.

Использовать такие гибкие стройматериалы можно практически на всех видах кровель.

Для установки металлочерепицы и металлопрофиля необходимый угол уклона кровли должен быть более 10°.

Кровля является плоской, если уклон ее перекрытия меньше 3°. Для возведения кровли такой конструкции необходим небольшой объем стройматериалов, но строить такую кровлю можно только тогда, когда в районе ее постройки выпадает немного осадков.

Любые кровельные скаты имеют несколько, подходящих для монтажа на них, видов кровельного покрытия. Самые популярные виды кровельных стройматериалов для покрытия:

  1. Черепица. Идеальное покрытие кровли. Крыша, покрытая черепичинами, обладает множеством преимуществ перед другими. Натуральная черепица прошла многовековую проверку на крышах и очень популярна у многих домовладельцев и сегодня. Сейчас можно купить огромное количество разновидностей этого стройматериала.
  2. Кровельные панели, укомплектованные всем необходимым для современной кровли сразу в заводских условиях. Такие панели включают нескольких слоев: плиту, основание, тепло- и пароизоляторы. Устанавливаться панели могут в любой период года, а сам процесс монтажа не требует особой подготовки, так как панели склеиваются между собой с помощью самоклеящейся спецленты. Основной недостаток такого стройматериала — его большая цена.

Кровельные панели

  • Стальные листы. Производятся в заводских условиях из оцинковки. Стройматериал экологичен и достаточно стоек к действию коррозии. Эксплуатироваться такое покрытие может до 75 лет. Однако такая кровля имеет не очень современный вид.
  • Штучные деревянные элементы – гонт, дрань. Сегодня эти стройматериалы для монтажа кровли практически не применяются, потому что эта кровля имеет множество недостатков — гниет, пожароопасна и разрушается насекомыми.
  • Шифер асбестоцементный. Высокопрочный, огнестойкий, долговечный и не пропускающий влагу кровельный стройматериал. Сегодня он выпускается разного цвета, а не только серого.
  • Все вышеперечисленные типы покрытий крыши размещаются на скатных поверхностях, угол уклона которых должен соответствовать применяемому стройматериалу покрытия, и опираются на стропильную конструкцию, передающую массу кровли на домостроение. Несущая система включает стропильные фермы и обрешеточную конструкцию.

    Крыша двухскатная своими руками – чертежи

    • Устройство и основные элементы двухскатной крыши
    • Преимущества двухскатной конструкции
    • Виды двухскатных крыш
    • Симметричная или простая двухскатная кровля
    • Крыша с разными углами наклона скатов
    • Крыша с большими свесами
    • Двухскатная ломаная конструкция крыши
    • Как сделать своими руками
    • Расчет кровли. Размеры. Определение угла наклона
    • Расчет сечения стропил. Таблица
    • Расчет расстояния между стропилами
    • Проект
    • Материалы
    • Монтаж двускатной крыши
    • Крепление мауэрлата
    • Устройство висячих стропил
    • Варианты крепления висячих стропил к мауэрлату
    • Устройство наслонных стропил
    • Монтаж обрешетки

    Двухскатная крыша – красивая на вид, надежная и сравнительно несложная форма кровли, за монтаж которой можно взяться, не имея большого опыта в строительстве. Всегда имеется возможность подобрать, несмотря на внешнюю простоту конструкции, оригинальный вариант дизайна для своего дома, бани или беседки.

    Понадобятся некоторые знания о том, как правильно рассчитать необходимые материалы, угол наклона и длину стропил, подыскать способы соединения элементов между собой. Детскую или полноценную спальню, кабинет или домашний кинотеатр часто размещают на мансардном этаже, возможность создать который позволяет двускатная крыша.

    Устройство и основные элементы двухскатной крыши

    В состав кровли, состоящей из 2 скатов, входят:

    1. Мауэрлат – анкерами или стержнями с резьбой по периметру к несущим стенам крепится брус 10-15 см или для небольшой конструкции доска 50×250 мм. Он служит для передачи нагрузки от стропил к стенам.
    2. Стропильная нога – доска (брус) 5×10 или 5×15 см. Является основным элементом каркаса. Они ставятся с шагом 0,6-1,2 м. На стропила ложится вся тяжесть от снега, града, ветра.
    3. Лежень – расположен на внутренней несущей стене, имеет форму бруса 10×10 или 15×15 см, нужен для передачи усилия от стоек кровли.
    4. Затяжка – входит в состав системы с висячими стропилами, соединяя их между собой внизу.
    5. Стойки – устанавливаются от конька вертикально, передают нагрузку внутренней несущей стене. Чаще всего изготавливаются с квадратного бруса.
    6. Подкосы – соединяют несущие элементы и ноги стропил, входят в состав фермы, которая объединяет подкосы, затяжку и стропила.

    Нагрузка от кровельного покрытия передается стропильной системе через расположенные перпендикулярно ногам доски или бруски – обрешетку. Она также является дополнительным скрепляющим элементом всей конструкции двускатной кровли.

    Преимущества двухскатной конструкции

    Основные преимущества, которое можно выделить для крыши с 2 скатами по сравнению с другими формами:

    • простота устройства, проектирования и монтажа;
    • все виды осадков сходят с поверхности быстро;
    • имеет минимальное число соединений, ребер, стыков;
    • равномерно распределяет на несущие элементы постройки нагрузку от ветра и снега;
    • обойдется дешевле, чем более сложные заменители;
    • при возведении конструкции можно обойтись без помощи профессиональных строителей.

    Виды двухскатных крыш

    Крыши двускатные бывают разных форм, каждая из которых отличается особенностями конструкции, дизайнерскими решениями и характеристиками подкровельного пространства.

    Симметричная или простая двухскатная кровля

    Щипцовая или симметричная классическая кровля представляет собой расположенные под нужным углом относительно постройки 2 плоских прямоугольных ската.

    Свойства и функции сооружения определяются прежде всего величиной угла такой крыши:

    1. Наиболее простым решением для домов с размерами стены в ширину до 8 м будет ферма со сторонами, имеющими наклон 45°.
    2. Меньшие углы применяются в районах с большими ветровыми нагрузками и для небольших зданий.
    3. Расположение скатов круче 45° – лучший вариант для строений, находящихся в регионах с большим количеством осадков в виде снега. Такой тип кровли является наиболее дорогостоящим.

    Симметричная ломаная конструкция понадобится для увеличения места под крышей.

    Крыша с разными углами наклона скатов

    Двускатная крыша с разными скатами, в основе которой находится произвольный треугольник с отличающимися углами, более сложна в расчетах. Одинаковых элементов в стропильной системе меньше. Какие-то части понадобится усиливать.

    Конструкции используются с целью:

    • получить мансардное помещения требуемой формы;
    • сделать балкон с нужной стороны и заданного размера;
    • создать стильный оригинальный дизайн.

    Появляются дополнительные возможности связать постройку с рельефом местности. Асимметричная крыша в некоторых случаях поможет разгрузить фундамент за счет отсутствия полноценного 2 этажа.

    Крыша с большими свесами

    С горных вершин Швейцарии и Франции в Россию пришло такое экстерьерное решение, как шале, когда под одной кровлей дома размещаются другие пристройки.

    Подход позволяет соединить традиционный взгляд на архитектуру и новые строительные технологии. Большие свесы помогают защитить от влаги фундамент и стены, сэкономить на устройстве отдельных кровельных систем.

    Двускатная крыша с разными скатами позволяет перекрыть несколько помещений, начиная от мансарды, и включая парковку, летнюю кухню, беседку или веранду, бассейн или хозяйственные постройки.

    Двухскатная ломаная конструкция крыши

    Чтобы приблизить форму мансардного помещения к классической жилой площади, кровельные скаты вверху делают более пологими, а книзу усиливают наклон – «ломают».

    С помощью этих манипуляций под кровлей получают:

    • высокий потолок;
    • почти вертикально расположенные стены и окна;
    • возможность сделать балкон во всю ширину;
    • отсутствие острых углов в комнатах.

    Изломы увеличивают пространство мансарды, делают его более привычным и уютным.

    Ломаные конструкции также применяются при создании разноуровневых двускатных крыш, когда скаты не только отличаются по длине, но и расположены на разной высоте.

    Как сделать своими руками

    Чтобы кровля служила долго и надежно выполняла свои функции, нужно правильно провести расчеты, сделать подробный проект, составить поэтапный план работ, подготовить нужные материалы и инструменты.

    Чем сложнее конструкция, тем более вероятны:

    • скопление осадков;
    • появление протечек в стыках покрытия;
    • ошибки в гидроизоляции и утеплении;
    • неверное перераспределение нагрузки по стропильной системе.

    Габариты здания обуславливают ширину конструкции. Используемый кровельный материал и климатические условия района определяют уклон скатов. От величины этих параметров зависит минимальная высота строения.

    Кроме того, придется учесть дизайнерские предпочтения, требования к мансарде и финансовые возможности.

    Расчет кровли. Размеры. Определение угла наклона

    Определившись с формой крыши, нужно выбрать стропильную систему. Чаще всего используют 2 технологии:

    1. Висячая – стропила снизу крепятся к стенам, а вверху опираются только друг на друга. Фермы образуют равнобедренный треугольник, в основании которого находится затяжка. Распорная нагрузка не передается на стены. Система используется для небольших пролетов.
    2. Наслонная – нижней опорой для стропил является мауэрлат, вверху они упираются в прогонную балку. Последняя поддерживается системой опор, каменными фронтонами коробки, внутренней стеной.

    Угол наклона может быть от 10 до 60° с отклонениями в каждую из сторон. Проще использовать равные углы наклона для обеих плоскостей двускатной конструкции, а асимметрию получить, применяя разноразмерные скаты.

    Чем плотнее и тяжелее кровельное покрытие, тем больше должен быть угол. Крышу нужно сделать ниже при небольшом количестве стыков, нахлестов, соединений между элементами покрытий.

    Профессионалы оптимальный угол рассчитывают в соответствии со СНиП 2.01.07-85, учитывающим особые, временные и постоянные нагрузки.

    Чтобы облегчить работу, можно воспользоваться онлайн-калькулятором для крыш. Понадобится знать размеры стропил (ширину и толщину) и указать их расстояние между ними – шаг.

    Расчет сечения стропил. Таблица

    В зависимости от кровельного материала подбирают сечение и шаг стропил.

    Вид кровлиШаг, смСечение, см
    шифер80-1305×15
    металлочерепица60-955×15, 5×20 (утеплитель)
    мягкая кровля60-1505×15
    ондулин60-905×20
    профнастилдо 1005×15

    Конструкции с несложной архитектурой можно строить исходя из оптимальных стандартных размеров доски и бруса:

    1. Стойки – брус 100×100 мм.
    2. Прогоны – брус 100×100, 100×150, 100×200 мм.
    3. Затяжки – брус 50×150 мм.
    4. Мауэрлат – брус 100×100, 100×150, 150×150 мм.
    5. Ригели (опоры для стоек) – брус 100×150 мм.
    6. Подшивочные и лобовые доски – доска 25×100, 25×150 мм.

    Расчет расстояния между стропилами

    Кроме типа кровельного материала, на шаг стропил влияют:

    • размеры и вид утеплителя;
    • ветровая и снеговая нагрузка;
    • характеристики используемых пиломатериалов, их прочность и качество;
    • расстояние между балками перекрытия и затяжками;
    • вес кровельного пирога и стропил;
    • удобство монтажа;
    • формы крыши;
    • угол наклона скатов;
    • тип стропильной конструкции;
    • материал обрешетки.

    Межосевое расстояние отдельных стропил получают делением длины ската на число стропильных ног. Их число определяют, разделив длину ската на табличное значение шага стропил, выбранное в зависимости от типа кровли (по указанной таблице).

    Стропильную систему с увеличенным шагом можно усилить обрешеткой.

    Проект

    Узнать требуемое количество стройматериалов, визуализировать и детально продумать конструкцию кровли поможет правильно составленный чертеж.

    Он должен содержать:

    1. Подробную схему стропильной системы, построенную с учетом типа кровельного покрытия и разного вида нагрузок.
    2. Размеры и конфигурацию всех элементов.
    3. Укрупненное изображение основных соединений.
    4. Укладку кровельного материала пошагово.
    5. Расположение дополнительных компонентов, служащих для усиления конструкции.
    6. Макет обрешетки.
    7. Устройство кровельного пирога – гидроизоляцию, утеплитель, пароизоляцию.
    8. Спецификацию пиломатериалов, использовать которые планируется.

    Материалы

    Смета, составленная предварительно, должна включать:

    1. Пиломатериал. Рассчитанный по периметру поставленной коробки брус для мауэрлата с запасом 5% на соединения и обработку. Доску или брус, которые будут использованы для изготовления стропильных ног, обрешетки, подкосов и т.д.
    2. Кровельное покрытие – профнастил, ондулин, металло- или керамическую черепицу, шифер, мягкую кровлю.
    3. Рулонную гидро- и пароизоляцию.
    4. Материал для свесов и фронтонов.
    5. Гвозди, скобы, шпильки, анкеры, саморезы, пластины и уголки.
    6. Для обустройства конька, свесов, ендов, проходов через крышу потребуются фасонные элементы.
    7. Термо- и звукоизоляцию.

    Монтаж двускатной крыши

    Лучше будет, если проект кровли включит в себя и подробный план работ: расположение на стене несущего устройства – мауэрлата, порядок установки стропильной системы, монтаж обрешетки, порядок укладки пирога кровли.

    Крепление мауэрлата

    Несущие брусья из сосны, лиственницы иди дуба чаще всего имеют стандартную длину – 6 м. Для большинства построек их нужно соединять между собой.

    Наиболее надежный способ – с запилом бруса (выборки древесины) и присоединением концов друг к другу внахлест. Половинки крепятся с помощью шайб и болтов М14, М12 и таким же способом соединяются по углам.

    К стене крепится несколькими способами или их комбинацией:

    1. За 2-3 ряда до окончания стены делают закладку стальной проволоки, на которую впоследствии с помощью ломика затягивают несущий брус.
    2. При монолитном строительстве замуровывают при отливке стены шпильки, в которые вкручиваются анкерные болты.
    3. На этапе возведения стены делают деревянные закладки. К ним впоследствии с помощью кованых скоб крепят мауэрлат.
    4. Используют предварительно замурованные штыри. В качестве крепежей применяют арматуру или шпильки.

    Устройство висячих стропил

    Стропильная конструкция такого типа нужна, когда в помещении под крышей не должно быть перегородок. Стропила не имеют поддержки в центре и опираются друг на друга или коньковую балку – висят.

    В качестве креплений используются пластины из металла, анкеры, гвозди или прорезные шипы. Основная нагрузка передается на распорки у основания и затяжку, высота расположения которой зависит от величины сдерживаемого усилия.

    Балки, горизонтально расположенные между стропилами, осуществляют усиление и стягивание стропильных ног. Возле конька крыши устанавливают дополнительные элементы из прочного бруса – ригели. Они выполняют функцию компенсации растягивающих воздействий.

    Равномерно распределить нагрузку на стены и фундамент здания помогает мауэрлат.

    Чтобы поддержать длинные затяжки, в конструкцию встраивают элементы, называемые бабками. Они располагаются под самым коньком кровли.

    Большие пролеты нуждаются в дополнительных подкосах и стойках, поддерживающих стропила. Конструкции собирают в арки разных форм.

    Варианты крепления висячих стропил к мауэрлату

    Стропильные ноги крепятся к мауэрлату рядом способов:

    1. Врубка стропил в несущий брус по заранее подготовленному шаблону.
    2. Если наклон ската больше 35°, можно использовать «двойной зуб». В месте расположения на балке крайнего упора вырезается шип. На самой балке устанавливается 2 упора, а в стропильной ноге делается отверстие.
    3. Крепление с помощью хомутов и болтов. На балке делают выемку, в которую ставится срезанная по торцу стропилина.

    Независимо от способа, лучше придерживаться следующих рекомендаций:

    • глубина, на которую допустимо зарубать стропила, не должна превышать 1/3 ширины;
    • для надежного соединения в каждом узле лучше применять 2 способа крепежа;
    • не всегда допустимо использовать шаблонные варианты, бывает, что требуется подогнать отдельно каждую ногу.

    Устройство наслонных стропил

    Если в постройке имеются промежуточные опоры и внутренние несущие стены, то для того, чтобы сделать крышу, применяют наслонную стропильную систему. Она отличается от висячей тем, что содержит опорные стойки под коньковым брусом и стропилами (подстропильные элементы).

    Конструкции могут быть как симметричными, так и несимметричными. Кроме того, существуют:

    • безраспорные системы, в которых распирающее горизонтальные усилия не передается на стены, а стропильная нога работает только на изгиб;
    • распорные системы – они содержат распор, передающий нагрузку на стены при прежних напряжениях изгиба и сжатия.

    Возможно использование гибридных конструкций, объединяющих наслонные и висячие.

    Монтаж обрешетки

    Обрешетка бывает разреженной и сплошной, одно- и двухслойной. Выбор зависит от материала кровли.

    Для изготовления сплошной обрешетки используют:

    • ДВП;
    • ДСП;
    • ОСП;
    • фанеру повышенной влагостойкости.

    Разреженную делают из доски или бруса, металла.

    Элементы крепятся к стропильным ногам с помощью гвоздей и саморезов. Шаг обрешетки зависит от материала покрытия и толщины доски. Для 20 мм он составляет 30 см, для 30 мм – 120 см.

    Конденсаторы: назначение, устройство, принцип действия

    Во всех радиотехнических и электронных устройствах кроме транзисторов и микросхем применяются конденсаторы. В одних схемах их больше, в других меньше, но совсем без конденсаторов не бывает практически ни одной электронной схемы.

    При этом конденсаторы могут выполнять в устройствах самые разные задачи. Прежде всего, это емкости в фильтрах выпрямителей и стабилизаторов. С помощью конденсаторов передается сигнал между усилительными каскадами, строятся фильтры низких и высоких частот, задаются временные интервалы в выдержках времени и подбирается частота колебаний в различных генераторах.

    Свою родословную конденсаторы ведут от лейденской банки, которую в середине XVIII века в своих опытах использовал голландский ученый Питер ван Мушенбрук. Жил он в городе Лейдене, так что нетрудно догадаться, почему так называлась эта банка.

    Собственно это и была обыкновенная стеклянная банка, выложенная внутри и снаружи оловянной фольгой – станиолем. Использовалась она в тех же целях, как и современная алюминиевая, но тогда алюминий открыт еще не был.

    Единственным источником электричества в те времена была электрофорная машина, способная развивать напряжение до нескольких сотен киловольт. Вот от нее и заряжали лейденскую банку. В учебниках физики описан случай, когда Мушенбрук разрядил свою банку через цепь из десяти гвардейцев взявшихся за руки.

    В то время никто не знал, что последствия могут быть трагическими. Удар получился достаточно чувствительным, но не смертельным. До этого не дошло, ведь емкость лейденской банки была незначительной, импульс получился очень кратковременным, поэтому мощность разряда была невелика.

    Как устроен конденсатор

    Устройство конденсатора практически ничем не отличается от лейденской банки: все те же две обкладки, разделенные диэлектриком. Именно так на современных электрических схемах изображаются конденсаторы. На рисунке 1 показано схематичное устройство плоского конденсатора и формула для его расчета.

    Рисунок 1. Устройство плоского конденсатора

    Здесь S – площадь пластин в квадратных метрах, d – расстояние между пластинами в метрах, C – емкость в фарадах, ε – диэлектрическая проницаемость среды. Все величины, входящие в формулу, указаны в системе СИ. Эта формула справедлива для простейшего плоского конденсатора: можно просто расположить рядом две металлические пластины, от которых сделаны выводы. Диэлектриком может служить воздух.

    Из этой формулы можно понять, что емкость конденсатора тем больше, чем больше площадь пластин и чем меньше расстояние между ними. Для конденсаторов с другой геометрией формула может быть иной, например, для емкости одиночного проводника или электрического кабеля. Но зависимость емкости от площади пластин и расстояния между ними та же, что и у плоского конденсатора: чем больше площадь и чем меньше расстояние, тем больше емкость.

    На самом деле пластины не всегда делаются плоскими. У многих конденсаторов, например металлобумажных, обкладки представляют собой алюминиевую фольгу свернутую вместе с бумажным диэлектриком в плотный клубок, по форме металлического корпуса.

    Для увеличения электрической прочности тонкая конденсаторная бумага пропитывается изолирующими составами, чаще всего трансформаторным маслом. Такая конструкция позволяет делать конденсаторы с емкостью до нескольких сотен микрофарад. Примерно так же устроены конденсаторы и с другими диэлектриками.

    Формула не содержит никаких ограничений на площадь пластин S и расстояние между пластинами d. Если предположить, что пластины можно развести очень далеко, и при этом площадь пластин сделать совсем незначительной, то какая-то емкость, пусть небольшая, все равно останется. Подобное рассуждение говорит о том, что даже просто два проводника, расположенные по соседству, обладают электрической емкостью.

    Этим обстоятельством широко пользуются в высокочастотной технике: в некоторых случаях конденсаторы делаются просто в виде дорожек печатного монтажа, а то и просто двух скрученных вместе проводков в полиэтиленовой изоляции. Обычный провод–лапша или кабель также обладают емкостью, причем с увеличением длины она увеличивается.

    Кроме емкости C, любой кабель обладает еще и сопротивлением R. Оба этих физических свойства распределены по длине кабеля, и при передаче импульсных сигналов работают как интегрирующая RC – цепочка, показанная на рисунке 2.

    На рисунке все просто: вот схема, вот входной сигнал, а вот он же на выходе. Импульс искажается до неузнаваемости, но это сделано специально, для чего и собрана схема. Пока же речь идет о влиянии емкости кабеля на импульсный сигнал. Вместо импульса на другом конце кабеля появится вот такой «колокол», а если импульс короткий, то он может и вовсе не дойти до другого конца кабеля, вовсе пропасть.

    Исторический факт

    Здесь вполне уместно вспомнить историю о том, как прокладывали трансатлантический кабель. Первая попытка в 1857 году потерпела неудачу: телеграфные точки – тире (прямоугольные импульсы) искажались так, что на другом конце линии длиной 4000 км разобрать ничего не удалось.

    Вторая попытка была предпринята в 1865 году. К этому времени английский физик У. Томпсон разработал теорию передачи данных по длинным линиям. В свете этой теории прокладка кабеля оказалась более удачной, сигналы принять удалось.

    За этот научный подвиг королева Виктория пожаловала ученого рыцарством и титулом лорда Кельвина. Именно так назывался небольшой город на побережье Ирландии, где начиналась прокладка кабеля. Но это просто к слову, а теперь вернемся к последней букве в формуле, а именно, к диэлектрической проницаемости среды ε.

    Немножко о диэлектриках

    Эта ε стоит в знаменателе формулы, следовательно, ее увеличение повлечет за собой возрастание емкости. Для большинства используемых диэлектриков, таких как воздух, лавсан, полиэтилен, фторопласт эта константа практически такая же, как у вакуума. Но вместе с тем существует много веществ, диэлектрическая проницаемость которых намного выше. Если воздушный конденсатор залить ацетоном или спиртом, то его емкость возрастет раз в 15…20.

    Но подобные вещества обладают кроме высокой ε еще и достаточно высокой проводимостью, поэтому такой конденсатор заряд держать будет плохо, он быстро разрядится сам через себя. Это вредное явление называется током утечки. Поэтому для диэлектриков разрабатываются специальные материалы, которые позволяют при высокой удельной емкости конденсаторов обеспечивать приемлемые токи утечки. Именно этим и объясняется такое разнообразие видов и типов конденсаторов, каждый из которых предназначен для конкретных условий.

    Электролитический конденсатор

    Наибольшей удельной емкостью (соотношение емкость / объем) обладают электролитические конденсаторы. Емкость «электролитов» достигает до 100 000 мкФ, рабочее напряжение до 600В. Такие конденсаторы работают хорошо только на низких частотах, чаще всего в фильтрах источников питания. Электролитические конденсаторы включаются с соблюдением полярности.

    Электродами в таких конденсаторах является тонкая пленка из оксида металлов, поэтому часто эти конденсаторы называют оксидными. Тонкий слой воздуха между такими электродами не очень надежный изолятор, поэтому между оксидными обкладками вводится слой электролита. Чаще всего это концентрированные растворы кислот или щелочей.

    На рисунке 3 показан один из таких конденсаторов.

    Рисунок 3. Электролитический конденсатор

    Чтобы оценить размеры конденсатора рядом с ним сфотографировался простой спичечный коробок. Кроме достаточно большой емкости на рисунке можно разглядеть еще и допуск в процентах: ни много ни мало 70% от номинальной.

    В те времена, когда компьютеры были большими и назывались ЭВМ, такие конденсаторы стояли в дисководах (по-современному HDD). Информационная емкость таких накопителей теперь может вызвать лишь улыбку: на двух дисках диаметром 350 мм хранилось 5 мегабайт информации, а само устройство весило 54 кг.

    Основным назначением показанных на рисунке суперконденсаторов был вывод магнитных головок из рабочей зоны диска при внезапном отключении электроэнергии. Такие конденсаторы могли хранить заряд несколько лет, что было проверено на практике.

    Чуть ниже с электролитическими конденсаторами будет предложено проделать несколько простых опытов, чтобы понять, что может делать конденсатор.

    Для работы в цепях переменного тока выпускаются неполярные электролитические конденсаторы, вот только достать их почему-то очень непросто. Чтобы как-то эту проблему обойти, обычные полярные «электролиты» включают встречно-последовательно: плюс-минус-минус-плюс.

    Если полярный электролитический конденсатор включить в цепь переменного тока, то сначала он будет греться, а потом раздастся взрыв. Отечественные старые конденсаторы разлетались во все стороны, импортные же имеют специальное приспособление, позволяющее избежать громких выстрелов. Это, как правило, либо крестовая насечка на донышке конденсатора, либо отверстие с резиновой пробкой, расположенное там же.

    Очень не любят электролитические конденсаторы повышенного напряжения, даже если полярность соблюдена. Поэтому никогда не надо ставить «электролиты» в цепь, где предвидится напряжение близкое к максимальному для данного конденсатора.

    Иногда в некоторых, даже солидных форумах, начинающие задают вопрос: «На схеме означен конденсатор 470µF * 16V, а у меня есть 470µF * 50V, можно ли его поставить?». Да, конечно можно, вот обратная замена недопустима.

    Конденсатор может накапливать энергию

    Разобраться с этим утверждением поможет простая схема, показанная на рисунке 4.

    Рисунок 4. Схема с конденсатором

    Главным действующим лицом этой схемы является электролитический конденсатор C достаточно большой емкости, чтобы процессы заряда – разряда протекали медленно, и даже очень наглядно. Это дает возможность наблюдать работу схемы визуально с помощью обычной лампочки от карманного фонаря. Фонари эти давно уступили место современным светодиодным, но лампочки для них продаются до сих пор. Поэтому, собрать схему и провести простые опыты очень даже просто.

    Может быть, кто-то скажет: «А зачем? Ведь и так все очевидно, да если еще и описание почитать…». Возразить тут, вроде, нечего, но любая, даже самая простая вещь остается в голове надолго, если ее понимание пришло через руки.

    Итак, схема собрана. Как она работает?

    В положении переключателя SA, показанном на схеме, конденсатор C заряжается от источника питания GB через резистор R по цепи: +GB __ R __ SA __ C __ -GB. Зарядный ток на схеме показан стрелкой с индексом iз. Процесс заряда конденсатора показан на рисунке 5.

    Рисунок 5. Процесс заряда конденсатора

    На рисунке видно, что напряжение на конденсаторе возрастает по кривой линии, в математике называемой экспонентой. Ток заряда прямо-таки зеркально отражает напряжение заряда. По мере того, как напряжение на конденсаторе растет, ток заряда становится все меньше. И только в начальный момент соответствует формуле, показанной на рисунке.

    Через некоторое время конденсатор зарядится от 0В до напряжения источника питания, в нашей схеме до 4,5В. Весь вопрос в том, как это время определить, сколько ждать, когда же конденсатор зарядится?

    Постоянная времени «тау» τ = R*C

    В этой формуле просто перемножаются сопротивление и емкость последовательно соединенных резистора и конденсатора. Если, не пренебрегая системой СИ, подставить сопротивление в Омах, емкость в Фарадах, то результат получится в секундах. Именно это время необходимо для того, чтобы конденсатор зарядился до 36,8% напряжения источника питания. Соответственно для заряда практически до 100% потребуется время 5* τ.

    Часто, пренебрегая системой СИ, подставляют в формулу сопротивление в Омах, а емкость в микрофарадах, тогда время получится в микросекундах. В нашем случае результат удобнее получить в секундах, для чего придется микросекунды просто умножить на миллион, а проще говоря, переместить запятую на шесть знаков влево.

    Для схемы, показанной на рисунке 4, при емкости конденсатора 2000мкФ и сопротивлении резистора 500Ω постоянная времени получится τ = R*C = 500 * 2000 = 1000000 микросекунд или ровно одна секунда. Таким образом, придется подождать приблизительно 5 секунд, пока конденсатор зарядится полностью.

    Если по истечении указанного времени переключатель SA перевести в правое положение, то конденсатор C разрядится через лампочку EL. В этот момент получится короткая вспышка, конденсатор разрядится и лампочка погаснет. Направление разряда конденсатора показано стрелкой с индексом iр. Время разряда также определяется постоянной времени τ. График разряда показан на рисунке 6.

    Рисунок 6. График разряда конденсатора

    Конденсатор не пропускает постоянный ток

    Убедиться в этом утверждении поможет еще более простая схема, показанная на рисунке 7.

    Рисунок 7. Схема с конденсатором в цепи постоянного тока

    Если замкнуть переключатель SA, то последует кратковременная вспышка лампочки, что свидетельствует о том, что конденсатор C зарядился через лампочку. Здесь же показан и график заряда: в момент замыкания переключателя ток максимальный, по мере заряда конденсатора уменьшается, а через некоторое время прекращается совсем.

    Если конденсатор хорошего качества, т.е. с малым током утечки (саморазряда) повторное замыкание выключателя к вспышке не приведет. Для получения еще одной вспышки конденсатор придется разрядить.

    Конденсатор в фильтрах питания

    Конденсатор ставится, как правило, после выпрямителя. Чаще всего выпрямители делаются двухполупериодными. Наиболее распространенные схемы выпрямителей показаны на рисунке 8.

    Рисунок 8. Схемы выпрямителей

    Однополупериодные выпрямители также применяются достаточно часто, как правило, в тех случаях, когда мощность нагрузки незначительна. Самым ценным качеством таких выпрямителей является простота: всего один диод и обмотка трансформатора.

    Для двухполупериодного выпрямителя емкость конденсатора фильтра можно рассчитать по формуле

    C = 1000000 * Po / 2*U*f*dU, где C емкость конденсатора мкФ, Po мощность нагрузки Вт, U напряжение на выходе выпрямителя В, f частота переменного напряжения Гц, dU амплитуда пульсаций В.

    Большое число в числителе 1000000 переводит емкость конденсатора из системных Фарад в микрофарады. Двойка в знаменателе представляет собой число полупериодов выпрямителя: для однополупериодного на ее месте появится единица

    C = 1000000 * Po / U*f*dU,

    а для трехфазного выпрямителя формула примет вид C = 1000000 * Po / 3*U*f*dU.

    Суперконденсатор – ионистор

    В последнее время появился новый класс электролитических конденсаторов, так называемый ионистор. По своим свойствам он похож на аккумулятор, правда, с несколькими ограничениями.

    Заряд ионистора до номинального напряжения происходит в течение короткого времени, буквально за несколько минут, поэтому его целесообразно использовать в качестве резервного источника питания. По сути ионистор прибор неполярный, единственное, чем определяется его полярность это зарядкой на заводе – изготовителе. Чтобы в дальнейшем эту полярность не перепутать она указывается знаком +.

    Большую роль играют условия эксплуатации ионисторов. При температуре 70˚C при напряжении 0,8 от номинального гарантированная долговечность не более 500 часов. Если же прибор будет работать при напряжении 0,6 от номинального, а температура не превысит 40 градусов, то исправная работа возможна в течение 40 000 часов и более.

    Наиболее распространенное применение ионистора это источники резервного питания. В основном это микросхемы памяти или электронные часы. В этом случае основным параметром ионистора является малый ток утечки, его саморазряд.

    Достаточно перспективным является использование ионисторов совместно с солнечными батареями. Здесь также сказывается некритичность к условию заряда и практически неограниченное число циклов заряд-разряд. Еще одно ценное свойство в том, что ионистор не нуждается в обслуживании.

    Пока получилось рассказать, как и где работают электролитические конденсаторы, причем, в основном в цепях постоянного тока. О работе конденсаторов в цепях переменного тока будет рассказано в другой статье – Конденсаторы для электроустановок переменного тока.

    Виды конденсаторов и их применение

    Подобные элементы представляют собой детали, в состав которых входят два проводника с диэлектрическим слоем. В зависимости от параметров данных компонентов, проявляются различия в особенностях отдельных моделей. В этом обзоре мы рассмотрим виды конденсаторов и специфику применения каждого из них.

    Что представляет собой конденсатор?

    Состоящая из пары электродов часть цепи, предназначенная для аккумулирования и передачи тока другим типам устройств, называется конденсатором. Особенности конструкции заключаются в наличии обкладок с противоположными зарядами. Нормальное функционирование обеспечивается размещением между такими пластинами специального диэлектрика. Таким способом устраняется вероятность соприкосновения подобных элементов между собой.

    Данные компоненты отлично справляются с функциями транспортировки сигналов и электроэнергии, выполнения их измерение, а также передачу.

    Особенности применения конденсатора

    У новичков часто возникает недопонимание, как правильно использовать конденсатор. Иногда появляется ложное мнение, что его вполне можно применить в качестве замены вместо блока питания или батареи.

    Подобные элементы входят в состав модулей в схемах со статичными значениями, а также в сочетании с резисторами и транзисторами представляют собой вид платы в различных приборах.

    Приоритетными остаются такие моменты:

    1. Выравнивание больших перепадов напряжения в устройствах переменного тока.
    2. Фильтрация возникающих НЧ и ВЧ помех.
    3. Оптимальное выравнивание пульсаций рабочего напряжения.

    В зависимости от задач, которые необходимо выполнить, классифицируются функции и назначение конденсатора:

    • конструкции общего назначения, в которых имеются исключительно низковольтные составляющие. Они размещены на компактных платах – бытовые чайники, радио- и телевизионная техника;
    • способные формировать и подавать на панели приемки приборов импульсные модели;
    • высоковольтные образцы для цепей с постоянным током, поддерживающие системы технического и производственного назначения;
    • применяемые для установки в блоках управления и пультах пусковые модификации;
    • в оборудовании для военно-промышленного комплекса, телевизионной и спутниковой отрасли применяются помехоподавляющие элементы.

    Входящие в состав платы детали различаются по такому параметру, как характеристика изменения емкости.

    Способные оптимизировать на протяжении всего обозначенного эксплуатационного периода стабильные показатели емкости постоянные конденсаторы. Подходят для всех разновидностей устройств.

    Применяемы для выполнения задач по изменению температурного режима, а также дополняющие работу варикапа и реостата переменные образцы.

    Гибкие по своим возможностям переменные модели, используемые для увеличения пропускной способности систем.

    Виды конденсаторов и их применение

    Рассмотрим популярные и чаще всего применяемые образцы.

    Металлобумажные и бумажные конденсаторы

    В этом случае применяются фольгированные прокладки. Область применения – как высоковольтные цепи, так и приборы, работающие на низких частотах.

    В них традиционную фольгу заменяет технология нанесения на диэлектрик порошка.

    Металлический корпус используется по причине отсутствия необходимой металлической прочности.

    Электролитические конденсаторы

    В данном случае функции диэлектрика выполняет относительно тонкий слой металлического оксида. Он создается на обложке с положительными параметрами электрохимическим способом.

    В виде сухого или жидкого электролита выполнена вторая обложка. Материалом создания электрода выбирается чаще всего тантал или алюминий. Профессионалы под термином «электролит» подразумевают конденсатор из алюминия с жидким электролитом.

    Следует опасаться ситуаций с инверсией полярности. В подобных случаях происходит необратимая химическая реакция, которая заканчивается разрушением элемента, а выделяемый во внутренней части при этом газ может послужить причиной взрыва.

    Танталовые конденсаторы

    Сам электрод выполнен из металла, а Ta2O5 (пентаоксид тантала) образует диэлектрический слой. Особенности подобных элементов:

    • идеальные показатели компактности;
    • невосприимчивость к внешнему воздействию;
    • минимальные токи утечки в сравнении с аналогами.

    Алюминиевые конденсаторы

    Металл выполняет функции положительного электрода. Необходимо отметить такие свойства – большие показатели емкости и способность корректной работы только при малых частотах.

    Обладает наиболее хорошим соотношением номинальной емкости к размерам, оптимальной индуктивностью, низкими характеристиками сопротивления и высокими показателями токов утечки.

    Полимерные конденсаторы

    Твердотельные модификации отличаются от аналогов наличием полимерных диэлектриков вместо привычной оксидной пленки. Таким способом устраняется опасность утечки тока и раздувания корпуса.

    Следствие физических характеристик полимерных материалов – минимальный эквивалент сопротивления, стабильность в условиях холода и большое значение импульсного тока.

    Во многих схемах именно таким элементам отдается предпочтение перед металлическими аналогами.

    Пленочные конденсаторы

    Используются пластиковые пленки – поликарбонатные МКС и КС, полипропиленовые MFP, MKP, и KP, а также полиэстер.

    • очень устойчивы на растяжение;
    • стабильная работа только при токах с большими параметрами;
    • незначительные параметры емкости;
    • мизерная утечка;
    • популярные варианты применения – RS-снабберы.

    Керамические конденсаторы

    Из оригинальных компонентов изготавливаются пластинчатые детали, обладающими целым рядом уникальных свойств.

    В первую очередь следует отметить огромный спектр проницаемости. Такая особенность способствует созданию компактных образцов, обладающих достаточно высокой емкостью. В сравнении с аналогами допускается работа с любой поляризацией и небольшими утечками.

    Электрические конденсаторы. Определение, классификация, применение.

    Конденсатор – это устройство, которое может накапливать электрический заряд при подключении к постоянному источнику электроэнергии. Иллюстрацией простейшего конденсатора могут послужить две металлические пластинки, разделенные диэлектриком.

    Такое свойство этих простых электрических устройств используют в фотовспышках, некоторых видах генераторов, электромагнитных ускорителях, компьютерной памяти. Они бывают разных видов и типов.

    1. Классификация конденсаторов
    2. Основные характеристики
    3. Преимущества и недостатки разных видов конденсаторов
    4. Сфера применения

    Классификация конденсаторов

    Эти электрические устройства отличаются типом диэлектрика и способностью к изменению своей емкости. В конденсаторах используют следующие типы диэлектриков:

    • твердые минералы (керамика, слюда, стекло);

    • твердые материалы органического происхождения (пленка, бумага);

    • аноды из танталовой, ниобиевой, алюминиевой фольги.

    Емкость конденсаторов может быть как стабильной, так и переменной. Также существует промежуточное звено – подстроечные конденсаторы. Их емкость регулируется только один раз, перед началом эксплуатации оборудования.

    Основные характеристики

    Несмотря на свое разнообразие, все конденсаторы обладают схожим набором характеристик. Основной параметр – это емкость. Емкость характеризует размер электрического заряда, который способен эффективно накопить конденсатор. Несколько конденсаторов можно объединять с помощью параллельного соединения. Такая система будет повышенной итоговой емкостью. Она будет равна общей сумме емкостей всех отдельных составных частей системы.

    Важно выбрать правильно емкость конденсатора:

    На практике чаще используют термин удельной емкости. Эта характеристика показывает возможность накопления электрического заряда на единицу веса устройства.

    Еще один важный параметр – энергетическая плотность. Чем больше конденсатор, тем она выше. Этот параметр играет важную роль в системах, где требуется мгновенное высвобождение энергии (пушка Гаусса, фотовспышка).

    Номинальное напряжение конденсатора, говорит об комфортных условиях работы этого электрического устройства. Только при номинальном уровне напряжения можно гарантировать работу конденсатора на протяжении всего срока службы. Значение этой характеристики также зависит и от температуры окружающего пространства. Чем она больше, тем ниже допустимое напряжение.

    Если конденсатор эксплуатировать в условиях повышенного напряжения, то возможно его разрушение.

    Преимущества и недостатки разных видов конденсаторов

    Использование органического диэлектрика позволяет создавать недорогую и эффективную продукцию. Такие конденсаторы обладают следующими преимуществами:

    • стабильные и высокие электрические характеристики при соблюдении небольших габаритов;

    • небольшие потери энергии;

    • выдерживают высокие токи;

    • не содержат редких или драгоценных металлов – снижается стоимость;

    • большое разнообразие форм и размеров.

    Бумажные и пленочные конденсаторы, пожалуй, самые распространенные устройства из этой группы.

    Конденсаторы, в которых используется твердый неорганический диэлектрик обычно дороже своих органических «собратьев». Это с лихвой компенсируется их лучшей температурной, радиационной, химической стойкостью. В целом такие устройства намного надежнее.

    Независимо от типа конденсатора, схемы подключения у них одинаковые:

    Сфера применения

    Сложно назвать хотя бы одну область электротехники, где не используются конденсаторы. Так, практически ни одно современное бытовое устройство не обходится без танталовых конденсаторов. Они применяются в:

    • автомобилях (ABS, управление фарами, контроль уровня масла, дистанционное открытие/закрытие дверей, навигационная система);

    • компьютерах, ноутбуках, телефонах;

    • «умной» бытовой технике (стиральные машины, кофеварки, кондиционеры, посудомойки).

    Ионистры (конденсаторы с двойным электрическим слоем) нужны в:

    • автомобилях (стартер, система запирания дверей);

    • системах аварийного освещения;

    • элементах, которые используют солнечную энергию.

    Без конденсаторов не обходятся ускорители заряженных частиц, лазеры, электромагнитные усилители. Эти же устройства могут ограничивать силу тока в цепи или осуществлять пуск асинхронного электродвигателя. Конденсаторы – один из «китов» современной электротехники.

    Классификация и конструкции конденсаторов.

    По назначению конденсаторы делятся на конденсаторы общего назначения и специального назначения. Конденсаторы общего назначения делятся на низкочастотные и высокочастотные. К конденсаторам специального назначения относятся высоковольтные, помехоподавляющие, импульсные, дозиметрические, конденсаторы с электрически управляемой емкостью (варикапы, вариконды) и др.

    По назначению конденсаторы подразделяются на контурные, разделительные, блокировочные, фильтровые и т.д., а по характеру изменения емкости на постоянные, переменные и полупеременные (подстроечные).

    По материалу диэлектрика различают три вида конденсаторов: с твердым, газообразным и жидким диэлектриком. Конденсаторы с твердым диэлектриком делятся на керамические, стеклянные, стеклокерамические, стеклоэмалевые, слюдяные, бумажные, электролитические, полистирольные, фторопластовые и др.

    По способу крепления различают конденсаторы для навесного и печатного монтажа, для микромодулей и микросхем.

    Пакетная конструкция. Она применяется в слюдяных, стеклоэмалевых, стеклокерамических и некоторых типах керамических конденсаторов и представляет собой пакет диэлектрических пластин (слюды) I толщиной около 0,04 мм, на которые напылены металлизированные обкладки 2, соединяемые в общий контакт полосками фольги 3 (рис.1). Собранный пакет спрессовывается обжимами 4, к которым присоединяются гибкие выводы 5, и покрывается влагозащитной эмалью. Количество пластин в пакете достигает 100 .

    Емкость такого конденсатора зависит от числа пластин в пакете, пФ ,

    Трубчатая конструкция. Она характерна для высокочастотных трубчатых конденсаторов и представляет собой керамическую трубку I (рис.2) с толщиной стенок около 0,25 мм, на внутреннюю и внешнюю поверхность которой методом вжигания нанесены серебряные обкладки 2 и 3. Для присоединения гибких проволочных выводов 4 внутреннюю обкладку выводят на внешнюю поверхность трубки и создают между ней и внешней обкладкой изолирующий поясок 5, снаружи на трубку наносится защитная пленка из изоляционного вещества.

    Емкость такого конденсатора

    (2.21)

    где l – длина перекрывающейся части обкладок в см,

    D1 и D2 – наружный и внешний диаметры трубки

    Дисковая конструкция. Эта конструкция (рис.3) характерна для высокочастотных керамических конденсаторов: на керамический диск I с двух сторон вжигаются серебряные обкладки 2 и 3, к которым присоединяются гибкие выводы 4. Емкость такого конденсатора определяется площадью обкладок и рассчитывается по (2.19).

    Литая секционированная конструкция. Эта конструкция характерна для монолитных многослойных керамических конденсаторов (рис.4), получивших в последние годы широкое распространение, в том числе в аппаратуре с ИМС.

    Такие конденсаторы изготовляют путем литья горячей керамики, в результате которого получают керамическую заготовку I с толщиной стенок около 100 мкм и прорезями (пазами) 2 между ними, толщина которых порядка 130-150 мкм. Затем эта заготовка окунается в серебряную пасту, которая заполняет пазы, после чего осуществляют вжигание серебра в керамику.

    В результате образуются две группы серебряных пластин, расположенных в пазах керамической заготовки, к которым припаиваются гибкие выводы. Снаружи вся структура покрывается защитной пленкой. В конденсаторах, предназначенных для установки в гибридных ИМС, гибкие выводы отсутствуют, они содержат торцевые контактные поверхности, которые присоединяются к контактным площадкам ГИС.

    Рулонная конструкция. Эта конструкция (рис.5) характерна для бумажных пленочных низкочастотных конденсаторов, обладающих большой емкостью. Бумажный конденсатор образуется путем свертывания в рулон бумажной ленты 1 толщиной около 5-6 мкм и ленты из металлической фольги 2 толщиной около 10-20 мкм. В металлобумажных конденсаторах вместо фольги применяется тонкая металлическая пленка толщиной менее 1 мкм, нанесенная на бумажную ленту.

    Рулон из чередующихся слоев металла и бумаги не обладает механической жесткостью и прочностью, поэтому он размещается в металлическом корпусе, являющемся механической основой конструкции.

    Емкость таких конденсаторов

    где b – ширина ленты, l – длина ленты, d – толщина бумаги.

    Емкость бумажных конденсаторов достигает 10 мкф, а металлобумажных 30 мкф.

    Подстроенные (полупеременные) конденсаторы. Особенностью этих конденсаторов является то, что их емкость изменяется в процессе производства РЭА (регулировки), а в процессе эксплуатации емкость таких конденсаторов должна сохраняться постоянной и не изменяться под воздействием вибрации и ударов.

    Они могут быть с воздушным или твердым диэлектриком. На рис.6 показано устройство подстроенного конденсатора с твердым диэлектриком типа КПК (конденсатор подстроечный керамический). Такой конденсатор состоит из основания 2 (статора) и вращающего диска 1 (ротора). На основание и диск напылены серебряные пленки полукруглой формы. При вращении ротора изменяется площадь перекрытия пленок, а следовательно, емкость конденсатора. Как правило, минимальная емкость (когда пленки не перекрыты) составляет несколько пикофарад, а при полном перекрытии пленок емкость конденсатора будет максимальной, величина этой емкости составляет несколько десятков пикофарад. От ротора и статора сделаны внешние выводы 3 и 4. Плотное прилегание ротора к статору обеспечивается прижимной пружиной 5.

    На рис.7 показано устройство подстроечного конденсатора с воздушным диэлектриком. На керамическом основании 1 установлены колонки 2 для крепления пластин статора 3. Пластины ротора 4 закреплены на оси ротора 5. Посредствам пружины – токосъема 6 ротор подключается к соответствующим точкам принципиальной схемы. Крепление конденсатора осуществляется с помощью колонок 7, имеющих внутреннюю резьбу.

    Рис.6. Рис.7.

    Конденсаторы переменной емкости. Емкость этих конденсаторов может плавно изменяться в процессе эксплуатации РЭА, например, для настройки колебательных контуров. Так же, как и подстроечный конденсатор, он состоит из статора и ротора, но в отличие от подстроечных количество роторных и статорных пластин велико, что необходимо для получения максимальной емкости порядка 500 пф. Как правило, эти конденсаторы имеют воздушный диэлектрик. На рис.8 показано устройство трехсекционного конденсатора переменной емкости. Каждая секция служит для настройки своего колебательного контура. Такие конденсаторы применяются в радиоприемной аппаратуре. Конструктивной основой является корпус 4, содержащий валики крепления 7 и планку крепления 9, в котором размещены статорная и роторная секции. Статорная секция 5 изолирована от корпуса, а роторная секция 1 состоит из неразрезных (внутренних) пластин 11 и разрезных (внешних) пластин 10. .Отгибая или подгибая часть сектора внешней пластины, можно изменять емкость в небольших пределах, что бывает необходимо в процессе заводской настройки аппаратуры. Роторные пластины закреплены на оси 2. Плавность вращения оси обеспечивается шариковым подшипником 3 и подпятником 8. На корпусе конденсатора около каждой роторной секции установлены специальные пружины -токосъемы 6, которые плотно прижимаются к ротору. Посредством токосъемов производится подключение роторных секций к соответствующим точкам схемы аппаратуры.

    Основными параметрами являются емкость и рабочее напряжение. Кроме того, свойства конденсаторов характеризуются рядом паразитных параметров.

    Номинальная емкость Сном и допустимое отклонение от номинала ∆С. Номинальные значения емкости Сном высокочастотных конденсаторов так же как и номинальные значения сопротивлений стандартизированы и определяются рядами Е6, Е12, Е24 и т.д.(см.табл.2.1). Номинальные значения емкости электролитических конденсаторов определяются рядом: 0,5; 1; 2; 5; 10; 20; 30;50; 100; 200; 300; 500; 1000; 2000:5000 мкф.

    Номинальные значения емкости бумажных пленочных конденсаторов определяются рядом: 0,5; 0,25; 0,5; 1; 2; 4; 6; 8; 20; 20; 40; 60; 80; 100; 200;400; 600; 800; 1000 мкф.

    По отклонению от номинала конденсаторы разделяются на классы (табл.2.4).

    Класс0,010,020,05I
    Допуск, %±0,1±0,2±0,5±1±2±5
    КлассIIIIIIIVVVI
    Допуск, %±5±10±20-10 +20-20 +30-20 +50

    Конденсаторы I, II, и III классов точности являются конденсаторами широкого применения и соответствуют рядам Е24, Е12 и Е6.

    В зависимости от назначения в РЭА применяют конденсаторы различных классов точности. Блокировочные и разделительные конденсаторы обычно выбирают по II и III классам точности, контурные конденсаторы обычно имеют 1,0 или 00 классы точности, а фильтровые – IV, V и VI классы точности.

    Электрическая прочность конденсаторов характеризуется величиной напряжения пробоя и зависит в основном от изоляционных свойств диэлектрика. Все конденсаторы в процессе изготовления подвергаются воздействию испытательного напряжения в течении 2 – 5 с. В технической документации указывается номинальное напряжение, т.е. такое максимальное напряжение, при котором конденсатор может работать длительное время при соблюдении условий, указанных в технической документации. Для повышения надежности РЭА конденсаторы используют при напряжении, которое меньше номинального.

    Стабильность емкости определяется ее изменением под воздействием внешних факторов. Наибольшее влияние на величину емкости оказывает температура. Ее влияние оценивается температурным коэффициентом емкости (ТКЕ):

    Изменение емкости обусловлено изменением диэлектрической проницаемости диэлектрика, изменением линейных размеров обкладок конденсатора и диэлектрика.

    В основном же изменение емкости вызывается изменением диэлектрической проницаемости.

    У высокочастотных конденсаторов величина ТКЕ не зависит от температуры и указывается на корпусе конденсатора путем окраски корпуса в определенный цвет и нанесения цветной метки.

    У низкочастотных конденсаторов температурная зависимость емкости носит нелинейный характер. Температурная стабильность этих конденсаторов оценивается величиной предельного отклонения емкости при крайних значениях температуры. Низкочастотные конденсаторы разделены на три группы по величине температурной нестабильности: Н20 – 20%; НЗО – 30%; Н90 – (+50 -90)%.

    Стабильность конденсаторов во времени характеризуется коэффициентом старения

    Потери энергии в конденсаторах обусловлены электропроводностью и поляризацией диэлектрика и характеризуются тангенсом угла диэлектрических потерь tgδ. Конденсаторы с керамическим диэлектриком имеют tgδ=10 -4 , конденсаторы со слюдяным диэлектриком – 10 -4 , с бумажным – 0,01-0,02, с оксидным – 0,1-1,0.

    Система обозначений и маркировка конденсаторов

    В настоящее время принята система обозначений конденсаторов постоянной емкости, состоящая из ряда элементов: на первом месте стоит буква К, на втором месте -двухзначное число, первая цифра которого характеризует тип диэлектрика, а вторая – особенности диэлектрика или эксплуатации (см. табл.2.5), затем через дефис ставится порядковый номер разработки.

    Например, обозначение К 10-17 означает керамический низковольтный конденсатор с 17 порядковым номером разработки. Кроме того, применяются обозначения, указывающие конструктивные особенности: КСО – конденсатор слюдяной спрессованный, КЛГ – конденсатор литой герметизированный, КТ -керамический трубчатый и т. д.

    Подстроечные конденсаторы обозначаются буквами КТ, переменные -буквами К П. Затем следует цифра, указывающая тип диэлектрика:

    1 – вакуумные; 2 – воздушные; 3 – газонаполненные; 4 – твердый диэлектрик; 5 – жидкий диэлектрик. В конструкторской документации помимо типа конденсатора указывается величина емкости, рабочее напряжение и ряд других параметров. Например, обозначение КП2 означает конденсатор переменной емкости с воздушным диэлектриком, а обозначение КТ4 – подстроечный конденсатор с твердым диэлектриком.

    На принципиальных схемах конденсаторы обозначаются в виде двух параллельных черточек и дополнительных элементов. На рис.2.20,а показан конденсатор постоянной емкости, на рис.9,6 – полярный (электролитический) конденсатор, на рис.9, в – конденсатор переменной емкости, на рис.9, г – подстроечный, на рис.9, д – варикап, на рис.9, е – вариконд.

    ОбозначениеТип конденсатораОбозначениеТип конденсатора
    К10Керамический, низковольтный (Upa6 1600B)К51Электролитический, фольговый, танталовый,ниобиевый и др.
    К20КварцевыйК52Электролитический, объемно-пористый
    К21СтеклянныйК53Оксидно-полупроводниковый
    К22СтеклокерамическийК54Оксидно-металлический
    К23СтеклоэмалевыйК60С воздушным диэлектриком
    К31Слюдяной малой мощностиК61Вакуумный
    К32Слюдяной большой мощностиК71Пленочный полистирольный
    К40Бумажный низковольтный(Uраб 2 кB) с фольговыми обкладкамиК75Пленочный комбинированный
    К76Лакопленочный
    К42Бумажный с металлизированными ОбкладкамиК77Пленочный, Поликарбонатный

    Около конденсатора ставится буква С с порядковым номером конденсатора, например С26, и указывается величина емкости. Около подстроенных и переменных конденсаторов указывается минимальная и максимальная емкости. Например, обозначения 5. 25 означают, что емкость изменяется от 5 до 25 пикофарад.

    На корпусе конденсатора указываются его основные параметры. В малогабаритных конденсаторах применяется сокращенная буквенно-кодовая маркировка. При емкости конденсатора менее 100 пФ ставится буква П.

    Например, 33 П означает, что емкость конденсатора 33 пф. Если емкость лежит в пределах от 100 пф до 0,1 мкф, то ставится буква Н (нанофарада). Например, 10 Н означает емкость в 10 нф или 10 000 пф. При емкости более 0,1 мкф ставится буква М, например, 10М означает емкость в 10 мкф. Слитно с обозначением емкости указывается буквенный индекс, характеризующий класс точности. Для ряда Е6 с точностью ±20% ставится индекс В, для ряда Е12 – индекс С, а для ряда Е24 – индекс И. Например, маркировка 1Н5С означает конденсатор емкостью 1,5 нф (1500 пф), имеющий отклонение от номинала ±10%.

    Дата добавления: 2015-07-18 ; просмотров: 1090 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

    Как выбрать компьютерное кресло для школьника: 5 важных моментов

    Изрядное количество школьных домашних заданий необходимо выполнять на компьютере. Это различные проекты, многочисленные доклады и рефераты. Подготовка к проверочным и экзаменационным тестам, вообще, проходит в интернете. Поэтому, наряду с портфелем и школьной формой, ребенку приобретают компьютер. И вот тут возникает необходимость в покупке специального стула.

    Начнем с главного:

    Нарушение осанки у школьников

    Врачи-ортопеды бьют тревогу — 75% детей школьного возраста имеют различные нарушения осанки. Для сравнения, в середине 20 века подобные дефекты наблюдались у 10% школьников. Специалисты связывают этот факт с приходом в нашу жизнь компьютерных технологий.

    Дети слишком много сидят: в школе, дома за уроками, добавляем занятия и игры на компьютере. И, в итоге получается 6-8 часов в день. Следует знать, что в сидячем положении позвоночный столб нагружается больше. При сидении мышечный корсет расслабляется и вся тяжесть тела ложится на неокрепший позвоночник. Самое вредное для ребенка – это сидеть!

    Если не уделить профилактике должного внимания – это чревато серьезными проблемами со здоровьем и может привести к инвалидности.

    Подключить спорт, направленный на укрепление мускулатуры, например – плавание. И, конечно же, обеспечить ребенка правильным компьютерным креслом.

    На что обратить внимание при покупке

    Ортопедическая спинка

    В норме позвоночник имеет изгиб в области поясницы, которые называется поясничный лордоз. Специальный выступ в нижней части спинки поддержит спину ребенка в естественном положении и не даст скрючиться на стуле. Длина спинки должна доходить до лопаток, это позволит мышцам быть в тонусе.

    Отсутствие подлокотников

    Выбирайте модель без подлокотников. Не имея возможности облокотиться, ребенок будет держать спину ровно, что только поспособствует правильному развитию мышечного корсета. Вкупе с низкой спинкой, возможность развалиться в кресле в неправильной позе будет исключена.

    Регулировка по высоте

    При сидении следует соблюдать простое правило: прямой угол между бедром и голенью. Хорошо если стул будет регулироваться по высоте сиденья — вы сможете пользоваться им более продолжительный период, настраивая по мере роста ребенка. Либо придется использовать специальную подставку для ног.

    Эргономичное сиденье

    Это сиденье со специальным углублением возле спинки, боковой поддержкой и скошенным передним краем. На таком на краешек не сядешь). Ребенок вынужден будет прижаться к спинке и сесть прямо. Анатомическая конструкция исключит, также, передавливание кровеносных сосудов под коленями и не будет препятствовать кровообращению в ногах.

    Механизм качания

    Его наличие не обязательно, но лучше предусмотреть возможность покачаться в кресле. И вот почему. Ортопедическая конструкция компьютерного кресла заставит постоянно контролировать спину. Сидеть в такой позе дольше получаса сложно. Необходимо давать мышцам периодически расслабиться. И если не устраивать перерывы, ребенок начнет инстинктивно раскачиваться, чтобы размяться. Не предназначенный для этого стул со временем выйдет из строя. А механизм качания позволит устраивать динамические паузы и качаться без опасений поломки. И в конечном итоге прослужит дольше.

    И еще одно:

    Выбирая детское компьютерное кресло для школьника не забывайте, что это, в первую очередь, рабочее кресло. Каждая деталь должна оказывать поддержку растущего организма, способствовать правильному физическому развитию и комфортной учебе без усталости.

    Читайте также:  Можжевельник, его виды, посадка и использование в ландшафтном дизайне
    Оцените статью
    Добавить комментарий