Какое реле контроля фаз и магнитный пускатель выбрать при нагрузке 5 кВт 3 фазы?

Как выбрать магнитный пускатель и автоматический выключатель для асинхронного двигателя

На примерах рассмотрен принцип выброра магнитного пускателя для управления электродвигателем и автоматического выключателя для его защиты от токов короткого замыкания и перегрузки.

Содержание статьи

Для пуска, реверсирования, принудительной остановки противотоком асинхронных электродвигателей электрики используются контакторы и магнитные пускатели. От правильности выбора коммутационной аппаратуры зависит, как и безотказность системы в целом, так и электробезопасность обслуживающего персонала.

Выбор пускателя и избыточным коммутируемым током ведет к большим финансовым затратам, при его коммутации слышны шлепки большей громкости, чем те что издают маленькие пускатели. Недостаточные по коммутируемой мощности пускатели долго не прослужат, будут греться, и подгорать клеммники и контакты. В результате переходное сопротивление контакта будет расти до тех пор, пока контакт не исчезнет полностью, что приведет к преждевременной замене аппарата.

Автоматические выключатели также должны быть правильно подобраны, особенно при тяжелом пуске двигателя. Слишком чувствительный автомат будет выбивать при пуске, а если он наоборот взят с излишним запасом по току, то в аварийной ситуации может и не отреагировать, что приведет к повреждению кабеля, обмотки двигателя вплоть до возгорания.

Пуск для электродвигателя сопровождается повышенным током в период разгона его до номинальных оборотов, в случае перегрузки и нехватки мощности двигателя для вращения исполнительных механизмов возможно пониженное число оборотов с повышенными токами, в плоть до того, что он вообще не начнет раскручиваться. И наоборот если мощность двигателя избыточна, то потребляемый им ток будет ниже номинального.

Из-за вышеперечисленных причин и появляется необходимость правильного подбора пусковой и защитной аппаратуры в виде магнитных пускателей, контакторов, тепловых реле и автоматических выключателей.

Автоматические выключатели устанавливаются до магнитного пускателя, чтобы в случае необходимости полностью обесточить систему, как силовую цепь, так и цепь управления (питания катушки).

Вместо автоматических выключателей могут использоваться плавкие вставки или предохранители, но в последнее время такие решения встречаются реже, чем раньше. Это усложняет обслуживание и вызывает необходимость иметь в запасе хотя бы комплект предохранителей.

Выбор магнитного пускателя

Магнитные пускатели выпускаются на определенный номинальный ток, из ряда: 6.3 – 10 – 25 – 40 – 63 – 100 – 160 – 250. Интересно, что линейка номиналов пускателей соотвествует золотому сечению. Еще ему соотвествуют стандартные значения сечения проводов. Подробнее об этом смотрите здесь: Какая связь между сечениями проводов и популяцией кроликов

Часто магнитные пускатели разделяют не по токам, а по величинам от 0 до 7, чем больше ток (или величина пускателя) тем больше его габариты и площадь контактов (0 – 6, 3, 1 – 10, 2 – 25, 3 – 40 и т.д.). Опытный электромонтер может отличить по размеру корпуса, конструкции дугогасителя и габаритам контактных площадок примерный коммутируемые ток и напряжение.

Однако если номинальный ток пускателя соответствует току двигателя, это еще не значит, что их можно использовать в паре. Если такое понятие как категория применения, она характеризует режим работы коммутируемой аппаратуры, частоту и условия коммутации. Иначе говоря – это способность переносить пусковые токи. Пусковые токи асинхронного двигателя могут превышать номинальные и в 10 раз, это зависит от условий пуска, напряжения в сети и прочих факторов.

Категории применения обозначаются: «АС-номеркатегории». Сводная таблица величин и категорий применения для магнитных пускателей расположена ниже.

Из неё нас интересует строка «АС-3 – управления двигателями с короткозамкнутым ротором (пуск, отключение без предварительной остановки)». Из этого очевидно, что коммутационные аппараты с такой категорией созданы для того, что бы включать и отключать электродвигателя. Они выдерживают прямой пуск.

Далее нужно определиться с номинальным током пускателя. Для этого нам нужно знать технические характеристики коммутируемого двигателя, а именно:

cos Ф – коэффициент мощности,

P – мощность двигателя номинальная;

U – рабочее напряжение (коммутируемое);

Тогда номинальный ток пускателя равен:

Для быстрых расчетов иногда применяют другую методику, когда мощность двигателя умножают на 2 и получают номинальный ток (приблизительно).

Далее нужно определить пусковой ток, в справочниках это указывается либо как «k» либо как «Iп/Iн». Это кратность или соотношение пускового тока к номинальному. Показывает, насколько ток в момент пуска превышает номинальную величину.

Пускатель с категорией применения АС-3 может коммутировать ток в 5-7 раз больше чем номинальный, для чего это сказано я покажу при расчетах ниже.

Выбираем пускатель

Допустим, у нас есть асинхронный двигатель с мощностью 2.2 кВт типа 4АМ100L6У3. На его шильдике написано, что кпд 81.0%, коэффициент мощности – 0.73, в интернете я нашел его технические данные, чтобы узнать кратность пускового тока, она оказалась – 5.5

1. Быстрый способ: IН=2.2*2 = 4.4А

2. Сложный способ: IНОМ=2200/(380*0.81*0.73*1.73)=5.6А

Результаты такого расчета дали больший ток.

Теперь считаем пусковой ток: IП=5.6*5.5=30.8А

Подбираем пускатель, с номинальным током более чем 5.6 А, с категорией применения АС-3. В результате обзора рынка, нам подходит пускатель ПМЕ 111 на 10А с тепловым реле.

Выбор автоматического выключателя

Автомат может сработать при пуске или затяжном пуске электродвигателя, когда потребляемый ток значительно превышает максимальный. В автоматическом выключателе за защиту отвечают два узла:

1. Электромагнитный расцепитель. Срабатывает при пиковом токе перегрузке. Этот ток зависит от типа автомата.

2. Тепловой расцепитель. Срабатывает при незначительном но длительном превышении номинального тока.

Номинальный ток двигателя у нас 5.6 А, значит нам нужен автомат не меньше этого значения. Типы автоматов куказывают на доустипое превышение по току в пике:

тип D – 10-50 раз.

Виды защитных характеристик автоматических выключателей

Пример выбора автоматического выключателя

Так как у нас пусковой ток в 5.5 раз больше чем номинальный, это значит что нам подходит автомат типа С и D. Например, автоматический разъединитель EZ9F34306 Schneider Easy9, рассчитан на 6 А и его тип C, позволит выдержать пусковые токи до 60 А.

Но такой автомат будет работать на пределе да и реальная уставка по току может быть ниже 5.5, т.к. тип С находится в пределах 5-10, нужен запас по току хотя бы в 20%.

Поэтому лучше установить автоматический выключатель на тот же ток или немного больший, но типа D, например ИЭК 6-8А ВА47-29

Или на ток 10А с типом C, например PL4-C10/3 Moeller / Eaton

Требования к автомату заключаются в том, чтобы он стабильно выдерживал номинальный ток, и его не выбило при пуске. Если планируется режим работы двигателя с частыми включения и выключениями лучше использовать автомат типа D, он менее чувствителен к всплескам тока.

Приниципы выбора других электрических аппаратов:

Эксплуатация и ремонт электрических аппаратов:

Заключение

Автоматический выключатель нужен для защиты питающего кабеля и дополнительной защиты двигателя, в случае затяжного пуска или заклинивания вала, дополнительно лучше использовать тепловую защиту. Магнитный пускатель должен выдерживать как напряжение, так и ток, который он будет коммутировать.

Электродвигатель должен быть исправен, отсутствовать витковые замыкания, а его вал должен свободно вращаться. В случае пуска двигателя под нагрузкой лучше брать коммутационную аппаратуру с запасом до 2-х раз для уменьшения вероятности преждевременного подгорания контактов и ложных срабатываний автоматического выключателя.

Питающий кабель должен соответствовать номинальному току, с учетом пусковых токов, как и способ соединения кабеля (использование гильз, наконечников, клеммников и прочего). Состояние всех соединений должно быть в норме – отсутствовать окислы, нагар и прочие механические дефекты, которые могут уменьшить площадь прилягания контакта.

Выбор пускателя (контактора)

Пускатель ПМЛ-1220 0*2Б с кнопками в корпусе

Пускатели применяют для подключения мощной нагрузки – электродвигателей, ТЭНов, мощных ламп, и др. Область применения – там, где реле уже не справляются, а полупроводниковые силовые элементы либо малы по току, либо дороги.

Контакторы (пускатели) электромагнитные

Следует внести немного порядка в терминологию. Часто путают пускатели и контакторы. Для некоторых это одно и то же, а некоторые говорят, что контактор – это просто большой мощный пускатель. Но насколько мощный – никто толком объяснить не может…

Раньше, во времена СССР, так оно и было. Теперь пускатели, которые выпускались или разрабатывались в те времена, так и называют пускателями (например, ПМЛ, который выпускается до сих пор на Украине), а новые и зарубежные модели называют контакторами.

Одни и те же устройства электрики называют пускателями, а продавцы – контакторами. Честно говоря, и мне привычней говорить именно пускатели.

Чем отличается контактор от пускателя?

На самом деле контактор – это устройство, состоящее только из электромагнитной катушки и контактов. При подаче напряжения на катушку контакты замыкаются (или размыкаются). Контактор не содержит приспособлений для защиты, фиксации, коммутации, индикации, и др. Пускатель – это устройство, содержащее в себе контактор как главный составляющий элемент. Кроме того, пускатель как правило содержит тепловое реле для защиты от перегрузки по току, кнопки ПУСК и СТОП, индикацию, может быть заключен в корпус, иметь автоматический выключатель для защиты от КЗ. Иначе говоря, пускатель служит для пуска (включения) различных потребителей электроэнергии.

Подробно о том, как трехфазный электродвигатель подключается к пускателю, различные схемы включения электродвигателя приведены в моей статье про подключение асинхронных двигателей. А ещё пример применения пускателей – в статье про схему гидравлического пресса. Различные схемы включения магнитных пускателей подробно рассмотрены здесь.

А если Вам вообще интересно то, о чем я пишу, подписывайтесь на получение новых статей и вступайте в группу в ВК!

Пускатель может содержать два или три контактора. Это бывает в случаях, когда применяется реверсивное управление двигателем, либо при плавном пуске, когда мощный двигатель включают сначала по схеме “звезда”, а затем – по “треугольнику”.

Хотя, такую схему нельзя назвать “плавной”, для плавного пуска существуют специальные устройства. Читайте мои статьи про Мягкий пускатель и про Реальную схему включения устройства плавного пуска.

Разобранный пускатель ПМЛ-1220 0*2Б. Видно контактор и тепловое реле.

Официально отличия контактора от пускателя прописаны в ГОСТ Р 50030.4.1-2012 (МЭК 60947-4-1:2009) Аппаратура распределения и управления низковольтная. Часть 4. Контакторы и пускатели. Раздел 1. Электромеханические контакторы и пускатели.

Ещё определения контакторов и пускателей даны в ГОСТ 17703-72 “Аппараты электрические коммутационные. Основные понятия” и ГОСТ Р 500030.4.4-2012 “Аппаратура распределения и управления низковольтная”.

Также будет интересно, какие грандиозные споры разгорелись у меня на канале Яндекс.Дзен в статье про отличия контакторов и пускателей.

Отличия реле от контактора

Реле от контактора отличаются лишь конструкцией и назначением, и разница иногда между ними слабо различима.

  • Реле не имеет дугогасительных камер.
  • Реле заключено в герметичный корпус.
  • Реле рассчитано на слабый ток и чисто активную нагрузку.
  • Реле имеет переключающие контакты, а значит нормально разомкнутые и замкнутые.
  • Реле не рассчитано на подключение реактивной трехфазной нагрузки.
  • Реле может иметь от 1 до 6 равнозначных контактов, а контактор обязательно имеет 3 силовых и (как опция) 1-2 слаботочных контакта.
  • Реле не имеет дополнительных функций и контактов, а контактор может быть дополнен приставками различной установки и назначения.
  • Реле устанавливается на панель, и легко может быть заменено лишь с помощью рук. Для того, чтобы заменить контактор, нужно обесточивать оборудование и использовать отвертку.

Характеристики и виды пускателей по характеристикам

Величина (условный габарит) пускателя (контактора)

Самый главный параметр, величина характеризует условно мощность и габариты пускателя. Существуют такие величины пускателей:

  • нулевая величина – на максимальный ток до 6 А (через каждый рабочий контакт)
  • первая – на максимальный ток до 9 – 18 А (в зависимости от исполнения контактов)
  • пускатель 2 величины – до 25 – 32 А
  • пускатель 3 величины – до 40 – 50 А
  • пускатель 4 величины – до 65 – 95 А
  • пускатель 5 величины – до 100 – 160 А
  • шестая величина – от 160 А и выше

Имеется ввиду ток по категории применения АС-3 (для индуктивной нагрузки), для категории АС-1 (резистивная или малоиндуктивная нагрузка – например, ТЭНы) максимальный ток для того же пускателя будет в полтора – два раза выше. От величины пускателя зависит, какую мощность он может коммутировать (трехфазная цепь 380 В, индуктивная нагрузка).

  • 1 – до 2,2 – 7,5 кВт
  • 2 – до 11 – 15 кВт
  • 3 – до 18 – 22 кВт
  • 4 – до 30 – 45 кВт

Сразу надо сказать, что эта мощность – действительно максимальная, реально надо смотреть на величину тока конкретного пускателя (как правило, вторая и третья цифра в названии). Величина пускателя указывается в названии первой цифрой. При превышении тока или токе, близком к максимальному, количество срабатываний (надежность) резко уменьшается, поэтому пускатель надо выбирать с запасом по мощности.

Количество контактов (полюсов)

В основном выпускаются контакторы с тремя рабочими контактами (для коммутации) и одним дополнительным. Дополнительный, или блокировочный контакт нужен для блокировки, или “самопитания”, чтобы зафиксировать контактор во включенном состоянии при использовании стандартной схемы включения. Дополнительные контакты бывают нормально разомкнутые (чаще всего используются) и нормально замкнутые.

Для увеличения количества дополнительных контактов используют контактные приставки, применение которых существенно расширяет круг схемотехнических решений. В СССР такие дополнительные приставки назывались ПКИ, сейчас в продаже есть и другие модели, но суть одна.

Читайте также:  Как разметить фундамент под гараж из блоков, пеноблоков и залить

Дополнительные контактные приставки ПКИ, и др.

Максимальный ток дополнительных контактов, как правило, равен (в пускателях первой и второй величин) или меньше максимального тока основных контактов. Существуют также дополнительные контакты (приставки) выдержки времени ПВЛ, в которых контакты включаются или выключаются через время задержки. Подробнее – в статье про пневматические реле выдержки времени.

Напряжение электромагнитной катушки контакторов

Электромагнитные катушки контакторов, как правило, выпускаются на следующие напряжения: 24, 36, 110, 230, 380 Вольт. В пускателях большой величины используются катушки бОльшей мощности. Катушки продаются и отдельно, и её можно легко заменить в контакторе, если нужна другая величина напряжения.

Как правило, при наличии нулевого проводника целесообразно применять катушки контактора на напряжение 220 В, а при его отсутствии (чисто трехфазные потребители) – катушки на 380 В.

Как заменить катушку контактора?

Иногда в наличии нет контактора с катушкой нужного напряжения, можно не покупать целиком нужный контактор. У многих производителей в продаже имеются катушки под разные напряжения и величины контакторов.

В частности, это относится к IEK, КЕАЗ. Иностранные производители, как правило, делают контакторы неразборными, и отдельно катушки к ним не продают.

Стоит сказать, что катушки контакторов на нужные напряжения должны быть в ремонтных комплектах, поскольку это можно считать расходным материалом. Основные неисправности катушек – обрыв обмотки и деформация корпуса.

Чтобы увеличить срок службы катушек контакторов или электромагнитов, которые находятся продолжительное время во включенном состоянии, допустимо эксплуатировать их на напряжении 85-90 % от номинала.

Виды пускателей по назначению

Теперь приведу пару примеров пускателей – реальных схем.

Эта схема пускателя собрана на трех контакторах второй величины и служит для подключения электродвигателя по схеме “звезда-треугольник”. Вверху слева подается три фазы, внизу – три фазы уходит на питания двигателя. Красные провода – питание катушек контакторов и проверка работы. Защита (мотор-автомат) не показана.

реверсивный пускатель с мотор-автоматом

Здесь – пускатель реверсивный, на двух взаимно блокированных контакторах. Мотор-автомат защиты двигателя – справа.

Бонус

В заключение – несколько фотографий контакторов, верой и правдой отслуживших свой век.

Пускатель 2 величины. Совнархоз Латвийской ССР, 1964 г.

пускатель ПМЕ 211

Пускатель ПМЛ, справа – его прототип Telemecanique

Страшно смотреть, но именно такие пускатели применялись в СССР…

…и такие. Не правда ли, очень похоже на музейный экспонат?

Где можно купить сейчас контакторы? Конечно, в соседнем электро магазине. И главное. Не забудьте сообщить продавцу напряжение катушки!

Реле контроля фаз и напряжения – для чего предназначено, устройство и принцип работы

При питании электроустановки от 3-фазной сети возможно снижение или повышение напряжении, обрыв одной из фаз или «0-го» проводника, а также несимметричности I и U. Для защиты оборудования от этих ситуаций устанавливается реле контроля фаз.

Ниже рассмотрим, в чем особенности этого устройства, для чего оно предназначено, и каковы тонкости подключения изделия. Кроме того, приведем советы по выбору и опишем лучшие модели, которые достойны внимания.

Для чего предназначено

Реле контроля фаз и напряжение — устройство, которое необходимо при подключении оборудования к системе с тремя фазами, а также в ситуациях, когда важно соблюсти правильное чередование.

На практике изделие применяется при частом переносе оборудования, когда при изменении фазировки возможно его повреждение или некорректная работа.

Яркий пример — компрессор винтового типа, неправильное подключение которого и включение на срок больше пяти секунд приводит к поломке дорогостоящего изделия.

Реле контроля фаз и напряжения позволяет определить следующие проблемы:

  • Обрыв любой из фаз;
  • Повышение или снижение напряжения выше (ниже) заданного уровня;
  • Нарушение фазировки (порядка подключения фаз);
  • Обрыв «нуля»;
  • Несимметрия I и U (здесь речь идет о перекосе фаз, когда угол между векторами значительно больше или меньше 120 градусов).

Принципиальная схема устройства показана ниже.

В некоторых реле предусмотрена возможность изменения уставок по верхнему и нижнему пределу U, а также T (времени) срабатывания.

Как правило, выходная контактная группа реле является «сухой». При этом в распоряжении есть два варианта — нормально замкнутые и разомкнутые. В некоторых моделях предусмотрены элементы, работающие на индукционном принципе.

Устройство и принцип работы

Несмотря на многообразие реле контроля фаз напряжения, конструктивные особенности почти неизменны. В основе устройства лежат микропроцессоры с заложенной в них программой и возможностью пользовательской настройки. Такая конструкция обеспечивает надежность работы и неприхотливость обслуживания.

В конструкцию изделия также входит схема, рассчитывающая порядок расположения (последовательности) фаз, а также контролирующая соответствие текущей ситуации той программе, которая заложена в реле.

На простейших моделях ко входу подходит три фазы и нулевой проводник, а на выходных клеммах предусмотрено реле с меняющимся контактом.

Напряжение на внутреннюю схему, как правило, подается с первой фазы (L1). Для наглядности устанавливается пара или более индикаторов (многое зависит от модели изделия) и компании-производителя.

В более дорогостоящих реле предусмотрен регулятор, позволяющий менять уставку по времени (смотрите фото выше). Благодаря этой опции, можно увеличивать или уменьшать время срабатывания реле при выполнении определенной программы.

Кроме того, во многих устройствах предусмотрена схема, реагирующая на снижение или повышение напряжения.

В основе работы реле контроля фаз U лежит выделение гармоник обратной последовательности (от 2-х и выше). При этом используются только кратные «двойке» гармоники, то есть «четвертая», «шестая», «восьмая» и прочие гармонические составляющие. Именно они появляются в случае обрыва любой из питающих фаз.

Для выделения таких U используются специальные фильтры (также обратной последовательности), роль которых играют фильтры аналогового типа. В их состав входят активные и реактивные узлы (резисторы и конденсаторы соответственно).

К наиболее популярным типам реле, предназначенным для контроля фаз, можно отнести модели ЕЛ следующих серий — 11, 12, 13, 11МТ и 12МТ.

Важно учесть, что сфера применения изделия зависит от их типов реле контроля фаз напряжения (ЕЛ):

  • 11 и 11 МТ — защита источников питания, участие в системе АВР, питание преобразователей и генераторных установок.
  • 12 и 12МТ — для защиты кранов, имеющих мощность, не превышающую 100 кВт.
  • 13 — применяются при подключении электрических моторов реверсивного типа, имеющих мощность до 75 кВт.

Фиксация устройств осуществляется на специальную DIN-рейку или только винтами (в зависимости от ситуации).

Характеристики

Современные реле контроля фаз выбираются с учетом следующих характеристик:

  1. НАПРЯЖЕНИЕ. Рабочее U напрямую зависит от спецификации оборудования. К примеру, EL серии 11 могут работать на напряжении от 100 до 415 В (в том числе 110 В, 220 В, 380 В и 400 В). Что касается ЕЛ 13, они работают на напряжении 220 и 380 В.
  2. ГРАНИЦА СРАБАТЫВАНИЯ. Этот параметр также зависит от вида реле и сложившейся ситуации. Так, при симметричном уменьшении напряжения устройства ЕЛ серий 11, 12 и 13 имеют минимальный предел, равный 0,7; 0,5 и 0,5 Uфн соответственно. В случае обрыва одной или более фаз все реле сработают. Если нарушено чередование, то модели ЕЛ11 и 12 распознают проблему и замыкают контактную группу, а ЕЛ13 нет.
  3. ВРЕМЯ ЗАДЕРЖКИ. Этот показатель отражает, насколько задерживается срабатывание реле контроля фаз напряжения при достижении необходимой уставки (заданное пороговое значение). Для моделей ЕЛ11 и 12 этот показатель равен от 0,1 до 10 секунд (в зависимости от регулировки), а для ЕЛ13 — до 0,15 с.
  4. РАБОЧАЯ ТЕМПЕРАТУРА. Как и в рассмотренных выше случаях, здесь ситуация зависит от типа реле. ЕЛ типа 11 и 12 работают от 40 градусов мороза до 40 градусов тепла. Что касается ЕЛ13, эти реле имеют меньший диапазон — от -10 до +45 градусов Цельсия.
  5. Температура хранения — от -60 до +50 градусов Цельсия.
  6. Вес изделия — 300 грамм (ЕЛ 11 и 13) и 250 грамм (ЕЛ 12).

Тонкости выбора

При выборе реле контроля фаз напряжения нужно ориентироваться на технические параметры устройства, которое подключается к цепи.

Для примера рассмотрим ситуацию, когда нужно выбрать модель для подключения АВР.

Алгоритм действий следующий:

  • ОПРЕДЕЛЯЕМ СПОСОБ ПОДКЛЮЧЕНИЯ — с «нулем» или без него.
  • ОПРЕДЕЛЯЕМСЯ С ПАРАМЕТРАМИ. Для схемы АВР важно, чтобы устройство контролировало факт обрыва фаз и последовательность фаз. При этом время задержки должно быть в диапазоне между 10 и 15 секундами. Требуется наличие контроля колебаний U больше или меньше уставки. Чтобы коммутировать реле с 0-ым проводом требуется визуальный контроль для каждой из фаз.

После анализа рассмотренных требований можно отдать предпочтение ЕЛ11Е.

Кроме того, при выборе нужно учитывать модификацию реле. К примеру, устройства отечественного производства обозначаются, как ЕЛ.

Что касается зарубежных изделий, их маркировка несколько иная. К примеру, РАНА В380 А А 3 С. Здесь «РАНА» — наименование серии, В380 — напряжение 380В. Следующие две буквы А — регулирование с помощью потенциометра и тип монтажа (под дин-рейку). Цифра «3» показывает размер корпуса 3,5 см, а С — последняя цифра маркировки.

Реле контроля фаз ЕЛ-11Е (380 В, 50 Гц), РКФ, ИЭК

Эти модели реле контроля фаз выпускает компания «Меандр», которая работает на рынке с 1992 года. Расположена компания в городе Санкт-Петербург.

В основе деятельности компании лежит разработка и изготовление устройств промышленной автоматики. За время существования компании удалось занять лидирующие позиции по изготовлению электронных устройств на российском рынке. Число производимых товаров превышает 500 единиц.

Клиентам предприятия являются такие гиганты, как Газпром, РЖД, Концерн Аврора, Ленэнерго и другие. Товары компании пользуются высоким спросом, благодаря качеству и широкому модельному ряду.

В распоряжение клиентов поступают электронные реле времени, приборы контроля напряжения, реле максимального тока, устройства управления освещением и многое другое.

Описание и технические характеристики реле ЕЛ-11Е (380 Вольт, 50 Гц)

Реле ЕЛ-11Е имеет по одному нормально замкнутому, нормально-разомкнутому и перекидному контакту.

Устройство предназначено для контроля фаз в 3-фазной сети, работает на переменном напряжении 380 Вольт. На практике применяется для контроля наличия U и правильности симметрии.

Кроме того, реле могут применяться для проверки правильности чередования фазировки в системах 3-фазного напряжения и в других случаях.

Технические характеристики ЕЛ-11Е и других модификаций серии.

К дополнительным плюсам стоит отнести контроль минимального и максимального U, функцию гистерезиса для 3-фазного тока.

Принципиальная схема показана ниже.

Описание и технические характеристики РКФ-М05-1-15/РКФ-М05-2-15

Реле РКФ-М05-1-15/РКФ-М05-2-15 применяются для контроля 3-фазного U в 3-проводных сетях (там, где не предусмотрено «нейтрали»).

С помощью устройства можно контролировать обрыв, правильность чередования и факт «слипания» фаз. Порог срабатывания по напряжению находится в диапазоне от 105 до 130% от номинального U.

Нижний порог U можно регулировать в диапазоне от 70 до 95%. Уставку по времени также удается менять от 0,1 до 10 с в зависимости от поставленной задачи.

Реле выпускается в пластмассовом корпусе и крепится на ДИН-рейку, имеющую ширину 35 мм. Максимальное напряжение составляет 400 В.

Описание и технические характеристики ИЭК ЕЛ-11М-15

Реле ЕЛ-11М-15 — устройство, предназначенное для применения в схемах автоматического управления. Применяется для контроля U в 3-фазных сетях без 0-го проводника. С помощью прибора можно контролировать и вовремя определять порядок чередования, факт обрыва и «слипания» разных фаз.

Кроме того, ЕЛ-11М-15 реагирует на факт повышения или снижения U выше (ниже) установленного параметра.

Применяется для защиты преобразователей электроэнергии и других источников питания. Эту модель нельзя применять в схемах АВР, где имеется нейтраль.

Это связано с тем, что в случае обрыва «0-го» провода возникает перекос напряжений и возможна поломка потребителей, работающих на одной фазе.

Модель потребляет меньше 2 ВА. Отключение происходит при превышении номинального U больше, чем на 30 процентов от уставки. Отключение происходит при уменьшении U ниже отметки 0,8 U ном. При появлении асимметрии между фазами больше 30% происходит отключение.

Реле контроля фаз Шнайдер

Компания Schneider (Шнайдер) считается одним из лучших производителей устройств в сфере электроэнергетики. Изделия этого предприятия активно применяются как на гражданских объектах, так и в крупных промышленных организациях.

Преимущества товаров предприятия заключаются в гибкой ценовой политике высоком качестве и специальных условий для покупателей.

Компания производит автоматические выключатели, предохранители, выключатели нагрузки и щитовое оборудование.

Кроме того, на заводе Schneider выпускаются реле, рубильники, розетки, контакторы и многие другие устройства.

К популярным моделям можно отнести реле:

  • Контроля 1-фазного напряжения (от 65 до 260 В и временной выдержкой от 0,1 до 10 с — RM17UBE
  • Контроля 3-фазного напряжения (от 208 до 480 В) — RM17TE
  • Контроля 1-фазного напряжения (от 160 до 280 В, 30-секундная задержка) — EZ9C
  • Контроля 3-фазного напряжения (от 208 до 480 В) — RM17TT00 и другие.

Реле контроля фаз ABB

Компания ABB ведет деятельность с 1883 года, что является лишним подтверждением надежности и востребованности продукции швейцарского бренда.

Первоначально производитель изготавливал генераторы и осветительные устройства, но с 1891 года начался выпуск электрических машин.

На современном этапе офисы производителя работают в многочисленных странах мира, а их число перевалило через отметку 100.

Компания производит и выпускает на рынок изделия для автоматизации производства, генерации и передачи электричества, защиты и автоматизации различных объектов в энергетическом секторе.

К наиболее востребованным моделям можно отнести следующие реле контроля напряжения — CM-PVE, CM-MPS.21S, CM-MPS.41S, CM-PFS и другие.

Читайте также:  Лучшие российские пеллетные котлы

Все они различаются по уровню напряжения, типу крепления, времени выдержки и другим параметрам.

Как подключить устройство? Схемы

Сразу отметим, что в случае применения частотного преобразователя в схеме подключения оборудования, установка реле контроля напряжения не требуется.

При подключении изделия важно ориентироваться на инструкцию, которая поставляется производителем. В большинстве случаев схема указана прямо на корпусе изделия, что упрощает монтаж и подключение.

Подключение к контактам изделия на входе и выходе осуществляется с помощью проводов, а их крепление производится под специальные зажимы.

В качестве проводника используются провода на 2,5 «квадрата» или сдвоенные провода по 1,5 «квадрата». При подключении важно соблюдать правильное чередование трех фаз.

Схема подключения может быть различной, как с «нулевым» проводом, так и без него. Первый вариант, как правило, встречается в частных домах и квартирах. В этом случае нагрузка равномерно подключается на каждую из фаз. Если имеется отклонение от нормы, происходит срабатывание реле.

Схема и видео подключения ЕЛ-11М-15

Схема подключения РФК-М05-1-15, РФК-М05-2-15

Чтобы избежать погашения света во всей квартире или доме, устанавливаются три разных изделия (индивидуально для каждой из фаз). При появлении проблем в одной из фаз срабатывает ответственное реле, а по остальным фазам продолжает поступать нагрузка.

Итоги

Важность реле контроля фаз сложно переоценить. С его помощью удается вовремя определить обрыв любой из фаз, повышение или снижение U выше (ниже) заданного параметра, проблемы в фазировке или обрыв «нулевого» проводника».

Но это лишь часть возможностей изделия, позволяющих предотвратить более серьезную аварию и защитить дорогое оборудование от поломки.

Онлайн помощник домашнего мастера

Реле контроля фаз – основное назначение, принцип работы и схема подключения. ТОП-лучших производителей электрооборудования!

В трёхфазной электрической цепи при неравномерном значении напряжения на разных фазах возникает очень неприятное явление – перекос фаз. Его результатом, как правило, становится значительное понижение мощности прибора. Это приведет к поломке, как промышленного оборудования, так и обычной бытовой техники.

Не будем углубляться в причины возникновения этого перекоса, а рассмотрим способы его устранения. Для предотвращения возникновения перекоса фаз, который в основном проявляется в трёхфазных сетях, используют реле контроля фаз.

Краткое содержимое статьи:

Назначение

Основное назначение реле контроля фаз это, безусловно, защита всех электротехнических промышленных и бытовых устройств, подключённых к трёхфазной сети. Реле обеспечивает контроль за наличием сетевого напряжения, его симметричности во всех фазах и правильным чередованием. Кроме этих прямых обязанностей, данное реле может обладать функцией контроля заданного уровня напряжения, и при уменьшении или увеличении определённого порога отключать питание.

Реле желательно располагать там, где происходит многократное переподключение приборов, например, для оборудования, которое часто переносят с одного места на другое и где неправильное чередование фаз будет довольно критично. Или при одновременном использованьи значительного количества приборов большой мощности (в квартирах или частных домах).

Конструктивные особенности

В процессе изготовление таких реле используют надёжные микропроцессоры, что объясняет простоту настройки, а также высокую надёжность этих устройств. Конструкция реле контроля обязательно включает в себя схему, вычисляющую порядок чередования фаз, и в соответствие с заложенным в схему алгоритмом срабатывают контакты на выходе реле.

В самых простых устройствах на вход подаётся 3-фазы и ноль, а на выходе имеем реле с переключающимся контактом. Запитка внутренней схемы осуществляется за счет фазы L1. Также обычно присутствуют 2 и более индикаторов – в зависимости от модели и производителя.

В более продвинутых устройствах присутствуют регулятор времени срабатывания (задержки) и схема, которая реагирует как на понижение, так и на повышение напряжения.

На выходы реле контроля можно подключать магнитные пускатели и контакты для запуска электродвигателей или любую сигнальную цепь, предупреждающую об отклонения в сети от нормы.

Самые распространенные типы реле контроля фаз, которые в основном используют на производстве и в бытовых условиях это ЕЛ11, ЕЛ12, ЕЛ13 и ЕЛ11МТ, ЕЛ-12МТ.

Для защиты источников питания, АВР, генераторов и преобразователей электроэнергии используют ЕЛ11 и ЕЛ11МТ.

Для обеспечения безопасности электродвигателей кранов мощностью до 100 кВт применяют ЕЛ-12 и ЕЛ12МТ.

ЕЛ13 применяется в основном при подключении реверсивных электродвигателей до75 кВт.

Крепление данных реле можно осуществить как с помощью DIN-рейки, так и с помощью крепёжных винтов.

Характеристики

Ниже приведены основные характеристики реле.

1) Рабочие напряжения:

  • EЛ11 – 100 V, 110 V, 220 V, 380 V, 400 V, 415 V
  • ЕЛ12 -100 V, 200V, 280 V
  • ЕЛ13 – 220 V, 380 V

2) Предел срабатывания реле.

а) При симметричном снижений напряжений на фазе:

  • EЛ11 – 0.7 * Uфн
  • ЕЛ12 – 0,5 * Uфн
  • ЕЛ13 – 0,5 * Uфн

б) При разрыве 1-ой или более фаз:

  • Срабатывают все виды реле.

в) При неправильном чередования фаз

  • ЕЛ11,ЕЛ12 – срабатывают
  • ЕЛ13 – не срабатывает

3) Время задержки (срабатывания) в секундах

  • ЕЛ11,ЕЛ12 – 0,1 до 10
  • ЕЛ13 – не более 0,15

4) Рабочие температуры:

  • ЕЛ11,ЕЛ12 – -40до +40 С
  • ЕЛ13 – – 10 до +45 C

5) Температура хранения от -60 до +50

6) Масса устройства

  • ЕЛ11,ЕЛ13 – 0,3 кг
  • ЕЛ12 -0,25 кг

Как подключить реле

Если при подключении промышленного или бытового оборудования используются частотные преобразователи, то использование реле контроля фаз вовсе не обязательно.

Частотный преобразователь не чувствителен к расположению и он всегда преобразует переменное напряжение в постоянное.

Непосредственное подключение осуществляется по инструкции как подключить реле именно этого типа. Довольно часто схема подключения изображена на корпусе устройства. Для этого следует обратить внимание на различные фото реле контроля фаз.

Подключение к внешним и внутренним источникам осуществляется с помощью проводов под зажимы. Под него подводят либо один провод сечением 2,5 мм либо два провода с сечением до 1,5 мм. Для подключения обязательно нужно соблюсти строгое чередование фаз A, B и С.

Обычно реле проверяет разрыв плюса их чередование, и уровень напряжения сети. При обнаружении неисправности в сети в действие вступает реле. Схема подключения может быть как трёх проводная без ноля, так и четырёх проводная с нулём. В квартирах часто применяется такая схема подключения. Подключаемую нагрузку формируют равномерно на каждую из 3-х фаз.

При не совпадении входного напряжения с нормой, срабатывает реле, но для того чтобы не пропадал ток во всей квартире целиком, делают вместо одного общеквартирного три различных реле по одному на каждую фазу.

При выходе за заданные значения какой-либо из фаз, срабатывает реле, отвечающее за данный контур, а остальная нагрузка (при условии нахождении в границах нужного диапазона) продолжает работать.

Рассмотрим схему подключения с нулем. Такая схема обеспечивает полный контроль над напряжением на каждой фазе, перекос и правильное чередование, и еще стоит отметить тот факт, что они применяется, как промышленный вариант. На выходе устройства с помощью силового контакт подсоединяем контактор, который одним концом своей обмотки подключён к нулевому проводу, а вторым концом к выходу одной из фаз.

Контакты 1, 2 и 3 подключают напряжение снятое с реле контроля напряжения на любую трёхфазную нагрузку такую как электродвигатель, или проточные обогреватели высокой мощности и прочее. Внутренняя схема реле измеряет значение напряжения на каждой из фаз и при нахождении U пределах нормальных значений, то подаёт энергию на подключённый контактор. Тот в свою очередь держит контакты в замкнутом состояние, и напряжение достигает внешней подключенной нагрузки.

В случае если вольтаж на любой из фаз выходит за заданный нами диапазон, то реле прекращает питать обмотку нашего контактора и тот, в свою очередь, размыкает свои контакты, обесточивая всю подключенную внешнюю нагрузку.

Если происходит возвращение внешнего источника напряжения в заданный рабочий диапазон, реле, спустя какое-то время вновь подаёт напряжение на клемы контактора, затем тот замыкает нашу цепь вновь. Различные схемы реле контроля фаз приведены ниже.

Выбор реле

Выбор нужного нам типа реле зависит непосредственно от технических характеристик подключаемого устройства и самого реле. Рассмотрим, какое реле лучше выбрать нам на примере подключения АВР (автомата ввода резервного питания). Сначала определяем нужный нам вариант подключения с нулевым проводом или без него.

Затем выясняем нужные нам параметры самого реле. Для подключения АВР необходимы такие рабочие характеристики в этом устройстве: контроль над слипанием и над обрывом фаз, контроль последовальности; задержка должна быть 10-15 сек; и должен присутствовать контроль за колебаниями заданного напряжение ниже или выше нужного нам порога. Для подключения по схеме с нулевым проводом нужен визуальный контроль по каждой фазе. При подключениях АВР можно выбирать тип реле EЛ11.

Как выбрать приборы контроля трехфазного напряжения для АВР?

Задача любого автомата ввода резервного питания (АВР) — контролировать основные параметры сетевого напряжения на основном вводе, и, в случае отклонения от заданных параметров, переключение на резервный источник питания.

На территории бывшего Советского Союза исторически сложилось: в качестве прибора контроля применение реле контроля фаз ЕЛ-11 или ЕЛ-12, а позднее их аналогов РСН25М, РОФ-11 и РСН26М, РОФ-12 соответственно — других реле просто не было.

Но какие параметры контролируют эти реле?

Практически все предприятия изготовители этих реле дают параметры приведенные в таблице 1.

ПараметрыЕЛ-11
(РСН25М, РОФ-11)
ЕЛ-12
(РСН26М, РОФ-12)
Номинальное напряжение питания переменного тока 50 Гц, В100, 110, 220, 380, 400, 415100, 220, 380
Допустимые колебания напряжения питания от номинального значения+10%, 15%
Срабатывание реле (переключение выходных контактов) при:
— однофазном снижении напряжения (при U фн в двух других фазах) U ср.фн0,6±0,05) Uфн(0,7±0,05) Uфн
— симметричном снижении фазных напряжений U ср.симне менее 0,7 Uфнне менее 0,5 Uфн
— обрыве одной, двух или трех фазсрабатываетсрабатывает
— обратном порядке чередования фазсрабатываетсрабатывает
Время срабатывания (пределы регулирования), с, не менееот 0,1 до 10от 0,1 до 10

Что это значит?

Это значит что изготовитель гарантирует, срабатывание (отключение) реле в следующих случаях:

  • при обрыве одной и более фаз;
  • при обратном порядке чередования фаз;
  • при снижении фазного напряжения по одной из фаз, при номинальном напряжении на двух других фазах, ниже (0,6±0,05) Uфн (для ЕЛ-11) и (0,7±0,05) Uфн (для ЕЛ-12);
  • при симметричном снижении фазных напряжений ниже 0,7 Uфн (для ЕЛ-11) и 0,5 Uфн (для ЕЛ-12).

И все А как поведет себя реле при слипании фаз?

Это достаточно частая авария на воздушных линиях (ВЛ). Как показывает практика, реле ЕЛ-11 не всегда срабатывает при этой аварии.

А что произойдет, если аварийная ситуация возникла до подачи напряжения питания на реле?

Как показали исследования поведения реле ЕЛ-11 в этой ситуации, реле обнаруживает аварию только после отработки установленной задержки срабатывания (0,1-10 с). На это время реле включается и по истечении его — выключается. Существует много различного электрооборудования, которое в этой ситуации успеет выйти из строя.

А как изменится порог срабатывания при снижении напряжения на одной из фаз, если на других фазах напряжение отличается от номинального?

А что будет, если возникнет перекос фаз?

А что будет, если напряжение на одной, двух или всех трех фазах поднимется выше всякого разумного предела?

Ответа на эти вопросы производители не дают.

В результате применения этих реле могут возникнуть очень серьезные неприятности.

Например. В щите АВР в качестве контрольного применено реле ЕЛ-11. Нагрузка щита АВР — однофазные потребители (уличное освещение, жилые дома, больницы и пр.). Из-за обрыва нулевого провода, или по каким-либо другим причинам, фазные напряжения, доходящие до потребителя, оказались с сильнейшим перекосом фаз. При этом все линейные напряжения в норме и реле контроля фаз «не видит» этой аварии. Напряжение на одних потребителях стало значительно ниже нормы, а на других — значительно выше. Резко повышается вероятность выхода из строя дорогостоящего оборудования, но самое главное, — повышается вероятность возникновения пожара.

Сейчас многие фирмы предпочитают применять вместо отечественных — импортные реле различных производителей. Но при этом разработчики АВР не всегда правильно выбирают тип реле.

Например. В щите АВР, работающего с нулевым проводом, используются популярные в России реле типа RM4 TR32 фирмы Telemecanique (Франция).

Последствия

  1. Это реле, как и реле ЕЛ-11, ЕЛ-12, работает без нулевого провода со всеми вытекающими отсюда последствиями (см. выше).
  2. Это реле имеет специфический для наших сетей алгоритм работы (это оговорено в документации на реле, но редко кто на это обращает внимание); — независимо от установленной задержки срабатывания, реле выключается мгновенно (без задержки) при кратковременном (менее 0,5 секунд) провале напряжения по одной или всем фазам ниже установленного порога. Это значит, что включение неподалеку мощного электродвигателя может вызвать ложное срабатывание АВР.

Как же правильно выбрать реле контроля фаз для АВР

  1. Прежде всего, надо определиться со схемой подключения — трехпроводная (без нуля) или четырехпроводная (с нулем).
  2. Далее надо определиться с контролируемыми параметрами. Для АВР, как правило, достаточно иметь следующий набор параметров в одном реле контроля фаз:
    • контроль чередования фаз;
    • контроль обрыва фаз;
    • контроль слипания фаз;
    • контроль снижения напряжения ниже установленного порога;
    • контроль превышения напряжения выше установленного порога;
    • регулировка задержки срабатывания (до 10-20 секунд);
    • желательна индикация наличия напряжения на каждой из фаз (для схем с нулем).
Читайте также:  Лазерный резак для резки фанеры, дерева, металла своими руками: советы по сборке

Этим требованиям для трехпроводной схемы подключения удовлетворяет, например, отечественное реле контроля трехфазного напряжения РКФ-М05-11 (или РКФ-М05-15 — отличаются корпусом). Реле контролирует линейные напряжения и имеет регулируемую установку верхнего и нижнего порогов напряжения и регулируемую задержку срабатывания от 0,1 до 10 секунд. Светодиодная индикация нормального и аварийного состояния сети.

Четырехпроводной схеме подключения удовлетворяет реле контроля трехфазного напряжения РКН-3-14-08. Реле контролирует фазные напряжения и имеет регулируемую установку верхнего и нижнего порогов напряжения и регулируемую задержку срабатывания от 0,1 до 10 секунд. Светодиодная индикация наличия фазных напряжений позволяет отказаться от применения дополнительного индикатора фаз в шкафу. При нормальном состоянии сети включается реле и соответствующий светодиод. Имеется индикация снижения напряжения ниже установленного порога, повышения напряжения выше верхнего порога и индикация обратного чередования фаз.

Оба реле допускают длительное полуторакратное перенапряжение и кратковременное двукратное (до 10 минут).

Е. Н. ВАСИН,
главный конструктор ЗАО «МЕАНДР».

Электромагнитный пускатель 380В: устройство, правила подключения и рекомендации по выбору

Электромагнитный пускатель – устройство, очень часто являющееся составляющей деталью электрических схем. Как правило, используется трехфазный электромагнитный пускатель 380В в схемах управления электромоторами. Однако кроме коммутации цепей электродвигателя, этот же элемент может успешно применяться для других целей.

Рассмотрим типовое устройство и принцип действия электроприбора. Кроме того, обозначим критерии выбора пускателия, расшифруем его маркировку и опишем нюансы подключения ЭМП к электрической цепи.

Особенности конструкции ЭМП

Конструкция электромагнитного пускателя (ЭМП) не отличается высокой сложностью исполнения. Но этот фактор никак не снижает надежности прибора.

Как устроен данный прибор?

Критерий надежности, по большей части, устанавливается правильным подключением цепей и точным выбором нагрузки.

Если эти критерии соблюдаются, прибор в большинстве случаев действует безупречно длительное время.

Классическое исполнение включает в себя следующие элементы:

  1. Корпус разборный из двух половин.
  2. Катушка индуктивности.
  3. Магнитопровод.
  4. Коммутирующее подвижное шасси.
  5. Группа контактов основных.
  6. Группа контактов вспомогательных.

Элементом магнитного пускателя, отвечающим за организацию коммутации силовой цепи, выступает подвижное шасси, объединенное с одной частью (подвижной) магнитопровода.

Само шасси выполнено из диэлектрического материала, а в качестве замыкающих контактов используются металлические (латунные) пластины. По концам пластин расположены контактные пятачки, выполненные из тугоплавких металлов, обычно это сплав серебра.

Неподвижная часть магнитопровода жёстко крепится внутри второй половины корпуса электромагнитного пускателя. На эту часть магнитопровода одевается катушка индуктивности и устанавливается пружина возврата.

Вторая часть корпуса прибора также наделяется контактами силовой и вспомогательной групп. Эти контакты закреплены на корпусе жестко при помощи винтов.

Устройство стандартного магнитного пускателя предполагает объединение двух половин корпуса, в результате чего объединяются также в единую конструкцию две половины Ш-образного магнитопровода.

При этом, за счёт пружины возврата, между половинами магнитопровода остается небольшой зазор, основные контактные группы в таком положении остаются разорванными.

Принцип действия ЭМП

Принцип действия прибора основан на эффекте электромагнитной индукции. Если на катушке, расположенной внутри пускателя, нет напряжения, магнитопровод остаётся в положении «с зазором», главные контакты разорваны.

Когда же через катушку пропускается электрический ток, под действием магнитного поля вторая (подвижная) часть магнитопровода преодолевает силу пружины и притягивается к первой (неподвижной) части.

Соответственно, главные контактные группы пускателя замыкаются пластинами подвижного шасси.

Обратный процесс очевиден – когда напряжение снимается с терминалов катушки индуктивности, магнитное поле прекращает действие, под силой пружины возврата подвижное шасси и вторая часть магнитопровода отталкиваются. Соответственно, магнитный пускатель возвращается в состояние разрыва контакта.

Следует отметить – исходя из конфигурации электроприбора, схема контактных групп может иметь самое разное строение. Особенно касательно вспомогательных контактов, которые могут находиться в замкнутом или разомкнутом состоянии в противовес состоянию главных контактов прибора.

Особенностью современных конструкций магнитных пускателей является модернизация схемы управления катушкой индуктивности.

Если исполнением прежних «устаревших» приборов предполагалась прямая подача напряжения на катушку, взятого от одной из фаз, теперь всё чаще используются электронные схемы.

Так, например, продукты известной компании «ABB» оснащаются электронной схемой стабилизации напряжения, подводимого к терминалу катушки индуктивности магнитного пускателя.

Управлению катушкой через электронную схему характерно то, что переменное напряжение предварительно выпрямляется и затем формируется импульсный сигнал. Такой подход обеспечивает увеличение срока службы и улучшение стабильности действия.

Как правильно подобрать электромагнитный пускатель

Учитывая несколько широкий ассортимент изделий подобного рода, который присутствует на коммерческом рынке, правила подбора становятся более чем актуальными для конечного пользователя.

Технические параметры прибора

Точный и правильный выбор магнитного пускателя на 380 вольт, к примеру, для электродвигателя, обеспечит бесперебойную работу мотора, и главное, – безопасность электрической системы.

Подбирается конкретный прибор, конечно же, исходя из технико-эксплуатационных параметров предполагаемой к подключению нагрузки. Существенное влияние на правильный выбор оказывает и принадлежность изделия к тому или иному бренду.

Следует отметить – на рынке присутствует достаточно высокий процент продукции низкого качества. Поэтому бренд, в этом случае, является важным критерием подбора.

Маркировка и тип крепления изделий

Каждый прибор, во всяком случае, фирменный, имеет соответствующую маркировку непосредственно на корпусе. Опираясь на технические сведения, содержащиеся в маркировке, достаточно просто выбрать коммутационное устройство в точном соответствии с требуемыми параметрами.

Так, коммутационные устройства той же фирмы «ABB» имеют примерно следующую систему маркировки:

А-26-30-10

Расшифровывается строка кодировки следующим образом:

  • «А» – буквенное обозначение указывает на тип прибора;
  • «26» – второй цифровой маркер определяет номинальный ток в амперах;
  • «30» – третье обозначение указывает число силовых контактов;
  • «10» – последнее число характеризует число вспомогательных контактов.

При этом для двух последних позиций списка характерным является разделение цифр. То есть, если указывается цифра «30», это означает наличие трех (3) нормально открытых контактов и отсутствие (0) нормально закрытых контактов.

Аналогичная расшифровка и для цифрового кода (10), указывающего на дополнительные контактные группы.

Подбирая исполнение магнитного пускателя на 380В под соответствующие цели, следует обратить внимание на технику крепления прибора.

Как правило, значительная доля устройств современной конфигурации выполняется с учётом установки на DIN-рейке. Но также существуют конструктивные исполнения приборов под крепление традиционным образом – винтами.

Нюансы подключения ЭМП в составе схемы

Классическая схема подключения ЭМП не выделяется особыми сложностями. Фактически, если не учитывать вспомогательные группы контактов, требуется подключать три основных линии – в схеме 380 вольт присутствует три фазы.

В общей сложности – это 6 контактов – три входных и три выходных, плюс два контакта цепи катушки индуктивности.

Однако реальное включение в электрическую цепь зачастую сопровождается довольно сложной схематикой, где участвует большое число вспомогательных контактов.

Как правило, современные схемы включения тех же электромоторов предполагают дополнительный ввод устройств защиты – тепловое реле и другие.

Выполняя подключение цепей к ЭМП, рассчитанному на 380В следует придерживаться следующих правил:

  • подключать при полном отсутствии напряжения;
  • входные цепи подключать через автоматический выключатель;
  • использовать сечение провода, оптимально подходящее под контакт;
  • выполнять затяжку винтов до упора, но без применения чрезмерной силы;
  • проверять целостность обмотки катушки (омметром) перед подключением линии питания;
  • проверять сводный ход подвижного шасси после выполнения всех подключений.

Как правило, коммутационные приборы подобного типа устанавливаются внутри шкафа, предназначенного под монтаж электрических линий. Исполнение шкафа – с дверкой для удобства обслуживания и ограничения доступа посторонних лиц.

Выводы и полезное видео по теме

Полноценный информативный расклад по магнитному пускателю через видеоролик, записанный известной торговой компанией электронных компонентов.

Автор ролика подробно и в доступной форме раскрывает сущность коммутационного устройства:

Устройства коммутации, подобные электромагнитному пускателю для трехфазных сетей, находят применение в промышленной, хозяйственной и бытовой сфере довольно часто. Поэтому полезно своевременно изучить информацию относительно таких приборов – как с ними работать, как подключать, как определять под установку и т.д.

Есть, что дополнить, или возникли вопросы по выбору и подключению электромагнитного пускателя? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом использования таких устройств. Форма для связи находится в нижнем блоке.

Однофазные и трехфазные реле напряжения: как выбрать?

Реле напряжения изготавливаются в трехфазном или однофазном исполнении. Т. е. они могут функционировать в цепи с соответствующим питанием у нагрузки. Функционирование всех реле напряжения (включая трехфазные ) идет в соответствии со следующим алгоритмом. Реле измеряет текущие значения напряжений, а при их возрастании / падении сверх установленного предела очень быстро (во избежание поломок) отключает питание от нагрузки. Время, за которое происходит срабатывание реле, называется его быстродействием. Оно составляет, как правило, от 0,01 до 1,2 секунд. После того, как напряжение стабилизируется в заданных пределах, реле возобновит подачу электропитания к оборудованию. Причем как дополнительный защитный фактор может использоваться встроенный таймер, подключающий питание нагрузки через задаваемое ему время задержки. Это особенно важно для агрегатов, которым противопоказаны часто повторяющиеся режимы пуска (вентиляторы, холодильные компрессоры и т. д.). Диапазон настроек времени задержки для всех представленных нами реле напряжений RBUZ составляет 3 – 600 секунд.

Основными причинами недопустимых отклонений питающего напряжения от номинальных значений являются внешние факторы, влияющие на электрические сети. Среди них:

  • Обрыв линий электропередач (фазного или нулевого проводника) порывами ветра, ветками деревьев и т. д.
  • Для индивидуального жилья и других, преимущественно удаленных объектов (включая промышленные) – игнорирование требований по увеличению поперечного сечения токопроводящих жил в кабеле в зависимости от расстояния до питающей подстанции.
  • Применение т. н. «скруток» для соединений проводов между собой вместо обжимных клемм.
  • Подсоединение к одной из фаз электросети объекта достаточно мощного оборудования, что приводит к ее перегрузке и, следовательно, значительному снижению напряжения. Это вызывает поломку остального электрооборудования, подключенного сюда же.

Все реле контроля рассчитаны на работу при напряжении в границах 100 – 420 В. Поэтому такие устройства не в состоянии защищать ваши электроприборы от воздействия разрядов молнии. В таких случаях используют специальные разрядники.

Перед монтажом реле напряжения необходимо правильно выбрать его модель, тип. Для этого пользователь должен точно определить:

  • Число фаз (одна либо три), подведенных к жилью либо другому объекту.
  • Полный перечень электрооборудования и его суммарную потребляемую мощность.

3-х фазные реле напряжения рекомендуется устанавливать исключительно в случае наличия в здании электрооборудования с таким же питанием. Причина этого заключается в следующем. При исчезновении напряжения на любой из трех фаз такое реле автоматически отключит питание на всех оставшихся, поскольку такой режим работы категорически недопустим для 3-х фазной техники. Аналогичная ситуация будет при незначительном отклонении (перекосе) значений фазных напряжений друг от друга. В ассортименте продукции бренда RBUZ имеется трехфазное реле напряжения модели 3F с номинальным током 5 А и мощностью нагрузки 1 кВА. Чтобы защитить трехфазных потребителей с помощью такого устройства, для их подключения следует обязательно применять контактор. 1-фазные реле контроля в случае значительного превышения паспортного значения коммутируемой мощности тоже надо подсоединять только через подобные контакторы (силовые реле, магнитные пускатели). Причем подбирать их необходимо с учетом требуемой мощи нагрузки. В том случае, если трехфазного оборудования нет и его монтаж не запланирован, достаточно смонтировать три однофазных реле напряжения, подключая их в каждую из имеющихся фаз. Такое решение гарантирует более высокую надежность энергоснабжения вашего объекта.

Подбирая реле в однофазные цепи питания, самым важным является правильное определение тока защитного устройства. Превышение мощности реле к соответствующей величине подключенной нагрузки должно составлять не меньше 20–30 %. В том случае, когда нагрузка подсоединена посредством автоматического выключателя номиналом 25 А, реле напряжения должно быть на 32 либо 40 А.

Важный нюанс – наличие встроенной защиты от перегрева, точнее, от повышения температуры внутри корпуса реле. Такая опция доступна в моделях Dt, а также R1, SR1, R2, P3, P6, подключаемых в электрическую розетку. Ее наличие практически исключает такие негативные явление как искрение, выгорание и перегрев в клеммных соединениях. Кроме всего прочего, для реле модели Dt характерна повышенная степень безопасности. В этом случае для увеличения ресурса работы контактной группы защитных устройств применено следующее решение. Нагрузку к такому реле коммутируют (подключают) в тот момент времени, когда синусоида питающего напряжения наиболее близка к переходу через ноль.

Однофазные реле напряжения торговой марки RBUZ это устройства серий D, D2, Dt, R1, SR1, R2, P3 и P6, которые являются одними из лучших моделей на рынке. Все они управляются обычными или сенсорными кнопками и имеют цифровой экран, который отражает текущее значение напряжения в сети и настройки, относящиеся к меню прибора. Модели D, Dt монтируют внутрь установочного шкафа на стандартную DIN-рейку. А R1, SR1, R2, P3 и P6 подают питание на нагрузку путем непосредственного включения в розетку. В этом случае количество защищаемого оборудования изменяется от одной до шести единиц (зависит только от моделей реле).

Оцените статью
Добавить комментарий